Skip to main content
Log in

Oxidation Behavior of the Skutterudite Material Yb0.2Co4Sb12

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The skutterudite materials belonging to the CoSb3 family are widely studied for thermoelectric applications. They are typically used under vacuum, but applications under oxidizing environments are increasingly considered. The addition of ytterbium is known to enhance the thermoelectric properties of CoSb3, but the corresponding impact on the oxidation behavior of the skutterudite material is barely explored. For that purpose, the present research describes the oxidation behavior of Yb0.2Co4Sb12 under a flow of air at 800 K for 15, 50, 100, and 1000 hours. The oxidation treatment induces the growth of a surface layer made of three oxides in various amounts as a function of the oxidation time. The spinel oxide CoSb2O4/CoO·Sb2O3 and CoSb2O6 are observed from 15 hours of oxidation, whereas Sb2O4 is formed only from 100 hours of treatment. To assess the impact of ytterbium, the oxidation behavior of Yb0.2Co4Sb12 is compared to that of CoSb3 oxidized in the same experimental conditions. The results show that the low amount of ytterbium promotes the oxidation reactions of the skutterudite material. Nonetheless, the impact on the degradation of the material remains acceptable to use Yb0.2Co4Sb12 for thermoelectric applications under oxidizing environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Rull-Bravo, A. Moure, J.F. Fernandez, and M. Martin-Gonzalez: RSC Adv., 2015, vol. 5, pp. 41653-67.

    Article  CAS  Google Scholar 

  2. G. Rogl and P. Rogl: Curr. Opin. Green Sustain. Chem., 2017, vol. 4, pp. 50-7.

    Article  Google Scholar 

  3. R. Drevet, L. Aranda, C. Petitjean, N. David, D. Veys–Renaux, and P. Berthod: Oxid. Met., 2019, vol. 91, pp.767-79.

    Article  CAS  Google Scholar 

  4. W. Liu, Q. Jie, H.S. Kim, and Z. Ren: Acta Mater., 2015, vol. 87, pp. 357-76.

    Article  CAS  Google Scholar 

  5. M. Zebarjadi, K. Esfarjani, M.S. Dresselhaus, Z.F. Ren, and G. Chen: Energy Environ. Sci., 2012, vol. 5, pp. 5147-62.

    Article  Google Scholar 

  6. J.W. Sharp, E.C. Jones, R.K. Williams, P.M. Martin, and B.C. Sales: J. Appl. Phys., 1995, vol. 78, pp. 1013-18.

    Article  CAS  Google Scholar 

  7. J.X. Zhang, Q.M. Lu, K.G. Liu, L. Zhang, and M.L. Zhou: Mater. Lett., 2004, vol. 58, pp. 1981-4.

    Article  CAS  Google Scholar 

  8. Y. Kawaharada, K. Kurosaki, M. Uno, and S. Yamanaka: J. Alloys Compd., 2001, vol. 315, pp. 193-7.

    Article  CAS  Google Scholar 

  9. R. Guo, X. Wang, and B. Huang: Sci. Rep., 2015, vol. 5, 7806.

    Article  CAS  Google Scholar 

  10. X. Shi, J. Yang, J.R. Salvador, M. Chi, J.Y. Cho, H. Wang, S. Bai, J. Yang, W. Zhang, and L. Chen: Multiple-Filled Skutterudites: J. Am. Chem. Soc., 2011, vol. 133, pp. 7837-46.

    Article  CAS  Google Scholar 

  11. E. Alleno, E. Zehani, and O. Rouleau: J. Alloys Compd., 2013, vol. 572, pp. 43-8.

    Article  CAS  Google Scholar 

  12. E. Alleno, E. Zehani, M. Gaborit, V. Orodniichuk, B. Lenoir, and M. Benyahia: J. Alloys Compd., 2017, vol. 692, pp. 676-86.

    Article  CAS  Google Scholar 

  13. T. Dahal, Q. Jie, G. Joshi, S. Chen, C. Guo, Y. Lan, and Z. Ren: Acta Mater., 2014, vol. 75, pp. 316-21.

    Article  CAS  Google Scholar 

  14. X. Xia, P. Qiu, X. Shi, X. Li, X. Huang, and L. Chen: J. Electron. Mater., 2012, vol. 41, pp. 2225-31.

    Article  CAS  Google Scholar 

  15. I.K. Dimitrov, M.E. Manley, and S. Shapiro: Phys. Rev. B, 2010, vol. 82, 174301.

    Article  Google Scholar 

  16. J. Yang, Q. Hao, H. Wang, Y. C. Lan, Q.Y. He, A.J. Minnich, D.Z. Wang, J.A. Harriman, V.M. Varki, M. Dresselhaus, G. Chen, and Z.F. Ren: Phys. Rev. B, 2009, vol. 80, 115329.

    Article  Google Scholar 

  17. L.E. Bell: Science, 2008, vol. 321, pp. 1457-61.

    Article  CAS  Google Scholar 

  18. V. Andrei, K. Bethke, and K. Rademann: Energy Environ. Sci., 2016, vol. 9, pp. 1528-32.

    Article  CAS  Google Scholar 

  19. R. Drevet, L. Aranda, C. Petitjean, D. Veys-Renaux, N. David, and P. Berthod: Oxid. Met., 2020, vol. 93, pp. 559-72.

    Article  CAS  Google Scholar 

  20. R. Kühn, O. Koeppen, P. Schulze, and D. Jänsch: Mater. Today proc., 2015, vol. 2, pp. 761-9.

    Article  Google Scholar 

  21. D. Veys-Renaux, R. Drevet, C. Petitjean, L. Aranda, N. David, and P. Berthod: J. Solid State Electrochem., 2018, vol. 22, pp. 2821-8.

    Article  CAS  Google Scholar 

  22. R. Drevet, C. Petitjean, N. David, L. Aranda, D. Veys-Renaux, and P. Berthod: Mater. Chem. Phys., 2020, vol. 241, 122417.

    Article  CAS  Google Scholar 

  23. R. Drevet, L. Aranda, N. David, C. Petitjean, D. Veys-Renaux, and P. Berthod: Surf. Coat. Technol., 2020, vol. 385, 125401.

    Article  CAS  Google Scholar 

  24. A. Navrotsky and O.J. Kleppa: J. Inorg. Nucl. Chem., 1968, vol. 30, pp. 479-98.

    Article  CAS  Google Scholar 

  25. H.S.C. O’Neill and A. Navrotsky: Am. Mineral., 1983, vol. 68, pp. 181-94.

    Google Scholar 

  26. E. Godlewska, K. Zawadzka, A. Adamczyk, M. Mitoraj, and K. Mars: Oxid. Met., 2010, vol. 74, pp. 113-24.

    Article  CAS  Google Scholar 

  27. J. Leszczynski, K.T. Wojciechowski, and A.L. Malecki: J. Therm. Anal. Calorim., 2011, vol. 105, pp. 211-22.

    Article  CAS  Google Scholar 

  28. M.K. Kumawat, C. Parlikar, M.D. Zafir Alam, and D.K. Das: Metall. Mater. Trans. A, 2021, vol. 52A, pp. 378-93.

  29. E. Mohammadi Zahrani and A.M. Alfantazi: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 4671-99.

  30. W.J. Zhang and R. Sharghi-Moshtaghin: Metall. Mater. Trans. A, 2021 vol. 52A, pp. 1492-1502.

    Article  Google Scholar 

  31. R. Hara, S. Inoue, H.T. Kaibe, and S. Sano: J. Alloys Compd., 2003, vol. 349, pp. 297-301.

    Article  CAS  Google Scholar 

  32. M. Ritouet and P. Berthod: Oxid. Met., 2018, vol. 89, pp. 339-55.

    Article  CAS  Google Scholar 

  33. F. Wu, Q. He, D. Hu, F. Gao, H. Song, J. Jia, and X. Hu: J. Electron. Mater., 2013, vol. 42, pp. 2574-81.

    Article  CAS  Google Scholar 

  34. W.L. Bragg: Philos. Mag., 1920, vol. 40, pp. 169-89.

    Article  CAS  Google Scholar 

  35. P. Berthod and Z. Himeur: Oxid. Met., 2018, vol. 90, pp. 187-202.

    Article  CAS  Google Scholar 

  36. V. Savchuk, A. Boulouz, S. Chakraborty, J. Schumann, and H. Vinzelberg: J. Appl. Phys., 2002, vol. 92, pp. 5319-26.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The French National Research Agency (ANR) is gratefully acknowledged for the financial support of the Nanoskut Project (ANR-12-PRGE-0008-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Drevet.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted on December 31, 2020; accepted June 8, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drevet, R., Aranda, L., David, N. et al. Oxidation Behavior of the Skutterudite Material Yb0.2Co4Sb12. Metall Mater Trans A 52, 3996–4002 (2021). https://doi.org/10.1007/s11661-021-06359-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06359-6

Navigation