Skip to main content

Advertisement

Log in

Microstructure Evolution and Tensile Properties of Cold-Rolled and Annealed Fe-30Mn-0.14C-7Cr-0.26Ni Steel

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The carbide precipitation, microstructure evolution, and tensile properties of Fe-30Mn-0.14C-7Cr-0.26Ni (in wt pct) steel after cold rolling to 95 pct reduction followed by annealing at temperatures ranging from 600 °C to 900 °C for 1 hour were investigated. The results show that, when the annealing temperature is increased from 600 °C to 900 °C, the grain size increases from 0.65 ± 0.30 to 5.75 ± 3.87 μm. When the annealing temperature is 600 °C, Cr23C6 carbides begin to precipitate. When the annealing temperature is increased from 600 °C to 800 °C, the average size of carbides increases from 39 to 69 nm. When the annealing temperature is increased to 900 °C, no carbides are produced due to the increased solubility of C in the austenite matrix. Ultrafine grains (~ 0.8 ± 0.58 μm) with a large amount of nanoscale carbides (~ 53 ± 21.8 nm) were obtained after annealing at 700 °C, resulting in a good combination of yield strength (679 MPa) and total elongation (38.4 pct). The fraction of deformation twins within the samples under different tensile strains was calculated, and it was revealed that grain refinement can seriously inhibit the generation of deformation twins. In addition, it has been found that grain refinement strengthening, precipitation strengthening, and dislocation strengthening have significant effects on yield strength, while the effects of solution strengthening and lattice friction are relatively weaker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. O. Grässel, L. Krüger, G. Frommeyer, and L.W. Meyer: Int. J. Plast., 2000, vol. 16, pp. 1391–1409.

    Article  Google Scholar 

  2. C. Haase, S.G. Chowdhury, L.A. Barrales-Mora, D.A. Molodov, and G. Gottstein: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 911–22.

    Google Scholar 

  3. O. Bouaziz, S. Allain, C.P. Scott, P. Cugy, and D. Barbier: Curr. Opin. Solid State Mater. Sci., 2011, vol. 15, pp. 141–68.

    Article  CAS  Google Scholar 

  4. Y. Lü, D.A. Molodov, and G. Gottstein: Acta Mater., 2011, vol. 59, pp. 3229–43.

    Article  CAS  Google Scholar 

  5. M. Koyama, Y. Shimomura, A. Chiba, E. Akiyama, and K. Tsuzaki: Scripta Mater., 2017, vol. 141, pp. 20–23.

    Article  CAS  Google Scholar 

  6. J. Hufenbach, F. Kochta, H. Wendrock, A. Voss, L. Giebeler, S. Oswald, S. Pilz, U. Kühn, A. Lode, M. Gelinsky, and A. Gebert: Mater. Des., 2018, vol. 142, pp. 22–35.

    Article  CAS  Google Scholar 

  7. L. Bracke, K. Verbeken, L. Kestens, and J. Penning: Acta Mater., 2009, vol. 57, pp. 1512–24.

    Article  CAS  Google Scholar 

  8. H. Li, F. Yin, T. Sawaguchi, K. Ogawa, X. Zhao, and K. Tsuzaki: Mater. Sci. Eng. A, 2008, vol. 49, pp. 4217–26.

    Google Scholar 

  9. V. Shterner, I.B. Timokhina, and H. Beladi: Mater. Sci. Eng. A, 2016, vol. 669, pp. 437–46.

    Article  CAS  Google Scholar 

  10. I. Gutierrez-Urrutia and D. Raabe: Acta Mater., 2012, vol. 60, pp. 5791–5802.

    Article  CAS  Google Scholar 

  11. K. Renard and P.J. Jacques: Mater. Sci. Eng. A, 2012, vol. 542, pp. 8–14.

    Article  CAS  Google Scholar 

  12. H.Z. Wang, P. Yang, W.M. Mao, and F.Y. Lu: J. Alloys Compds., 2013, vol. 558, pp. 26–33.

    Article  CAS  Google Scholar 

  13. J.B. Seol, J.E. Jung, Y.W. Jang, and C.G. Park: Acta Mater., 2013, vol. 61, pp. 558–78.

    Article  CAS  Google Scholar 

  14. V. Shterner, I.B. Timokhina, and H. Beladi: Adv. Mater. Res., 2014, vol. 922, pp. 676–81.

    Article  CAS  Google Scholar 

  15. S. Allain, J.P. Chateau, and O. Bouaziz: Mater. Sci. Eng. A, 2004, vols. 387–389, pp. 143–47.

    Article  CAS  Google Scholar 

  16. K.-T. Park, K.G. Jin, S.H. Han. S.W. Hwang, K. Choil, and C.S. Lee: Mater. Sci. Eng. A, 2010, vol. 527, pp. 3651–61.

    Article  CAS  Google Scholar 

  17. S. Allain, O. Bouaziz, and J.P. Chateau: Scripta Mater., 2010, vol. 62, pp. 500–03.

    Article  CAS  Google Scholar 

  18. S.I. Lee, S. Y. Lee, J. Han, and B. Hwang: Mater. Sci. Eng. A, 2019, vol. 742, pp. 334–43.

    Article  CAS  Google Scholar 

  19. K.M. Rahman, V.A. Vorontsov, and D. Dye: Acta Mater., 2015, vol. 89, pp. 247–57.

    Article  CAS  Google Scholar 

  20. M. Koyama, T. Sawaguchi, and K. Tsuzaki: Mater. Sci. Eng. A, 2011, vol. 530, pp. 659–63.

    Article  CAS  Google Scholar 

  21. I. Gutierrez-Urrutia, S. Zaefferer, and D. Raabe: Mater. Sci. Eng. A, 2010, vol. 527, pp. 3552–60.

    Article  CAS  Google Scholar 

  22. S. Kang, J.G. Jung, M. Kang, W. Woo, and Y.K. Lee: Mater. Sci. Eng. A, 2016, vol. 652, pp. 212–20.

    Article  CAS  Google Scholar 

  23. B.C. De Cooman, Y. Estrin, and S.K. Kim: Acta Mater., 2018, vol. 142, pp. 283–362.

    Article  CAS  Google Scholar 

  24. T. Yang, Y.L. Zhao, Y. Tong, Z.B. Jiao, J. Wei, J.X. Cai, X.D. Han, D. Chen, A. Hu, J. J. Kai, K. Lu, Y. Liu, and C.T. Liu: Science, 2018, vol. 362, pp. 933–37.

    Article  CAS  Google Scholar 

  25. K. Zhang, H.Y. Wen, B.B. Zhao, X.P. Dong, and L.T. Zhang: Mater. Charact., 2019, vol. 155, p. 109792.

    Article  CAS  Google Scholar 

  26. C. Scott, B. Remy, J.-L. Collet, A. Cael, C. Bao, F. Danoix, B. Malard, and C. Curfs: Int. J. Mater. Res., 2011, vol. 102, pp. 538–49.

    Article  CAS  Google Scholar 

  27. H. Kubo, K. Nakamura, S. Farjami, and T. Maruyama: Mater. Sci. Eng. A, 2004, vol. 378, pp. 343–48.

    Article  CAS  Google Scholar 

  28. Y. Yazawa, T. Furuhara, and T. Maki: Acta Mater., 2004, vol. 52, pp. 3727–36.

    Article  CAS  Google Scholar 

  29. K.H. Han: Mater. Sci. Eng. A, 2000, vol. 279, pp. 1–9.

    Article  Google Scholar 

  30. S. Kajiwara, D.Z. Liu, T. Kikuchi, and N. Shinya: Scripta Mater., 2001, vol. 44, pp. 2809–14.

    Article  CAS  Google Scholar 

  31. J. Moon, H.-Y. Ha, S.-J. Park, T.-H. Lee, J.H. Jang, C.-H. Lee, H.N. Han, and H.-U. Hong: J. Alloys Compds., 2019, vol. 775, pp. 1136–46.

    Article  CAS  Google Scholar 

  32. Y.S. Zhang, X.M. Zhu, and S.H. Zhong: Corr. Sci., 2004, vol. 46, pp. 853–76.

    Article  CAS  Google Scholar 

  33. S.S.M. Tavares, M.L. Laurya, H.N. Farneze, R.V. Landim, J.A.C. Velasco, and J.L.M. Andia: Eng. Fail. Anal., 2019, vol. 104, pp. 331–40.

    Article  CAS  Google Scholar 

  34. X.M. Chen, Y.H. Wang, J.C. Xiong, G.Y. Li, Y.Z. Tian, W.Q. Cao, and T.S. Wang: Front. Mater., 2020, vol. 7.

  35. Y.H. Wang, J.M. Kang, Y. Peng, T.S. Wang, N. Hansen, and X.X. Huang: Scripta Mater., 2018, vol. 155, pp. 41–45.

    Article  CAS  Google Scholar 

  36. S. Deb, S.K. Panigrahi, and M. Weiss: Mater. Charact., 2019, vol. 154, pp. 80–93.

    Article  CAS  Google Scholar 

  37. K. Maruyama, K. Sawada, and J.-I. Koike: ISIJ Int., 2001, vol. 41, pp. 641–53.

    Article  CAS  Google Scholar 

  38. M. Roussel, X. Saurage, M. Perez, D. Magné, A. Hauet, A. Steckrneyer, M. Vermont, T. Chaise, and M. Couvrat: Materials, 2018, vol. 4, pp. 331–39.

    Google Scholar 

  39. S.H. Byun, N. Kang, T.H. Lee, S.K. Ahn, H.W. Lee, W.S. Chang, and K.M. Cho: Metall. Mater. Int., 2012, vol. 18, pp. 201–07.

    Article  CAS  Google Scholar 

  40. Y.M. He, Y.H. Wang, K. Guo, and T.S. Wang: Mater. Sci. Eng. A, 2017, vol. 708, pp. 248–53.

    Article  CAS  Google Scholar 

  41. K. Kaneko, T. Fukunaga, K. Yamada, N. Nakada, M. Kikuchi, Z. Saghi, J.S. Barnard, and P.A. Midgley: Scripta Mater., 2011, vol. 65, pp. 509–12.

    Article  CAS  Google Scholar 

  42. Y.H. Wang, B.D. Shi, Y.M. He, H.W. Zhang, Y. Peng, and T.S. Wang: Materials, 2018, vol. 11, pp. 253–61.

    Article  CAS  Google Scholar 

  43. Y.H. Wang, J.M. Kang, Y. Peng, T.S. Wang, N. Hansen, and X.X. Huang: J. Mater. Sci. Technol., 2018, vol. 34, pp. 229–33.

    Article  CAS  Google Scholar 

  44. S. Curtze, V.T. Kuokkala, A. Oikari, J. Tälonen, and H. Hänninen: Acta Mater., 2011, vol. 59, pp. 1068–76.

    Article  CAS  Google Scholar 

  45. S. Allain, J.P. Chateau, O. Bouaziz, S. Migot, and N. Guelton: Mater. Sci. Eng. A, 2004, vol. 387, pp. 158–62.

    Article  CAS  Google Scholar 

  46. O. Bouaziz and N. Guelton: Mater. Sci. Eng. A, 2001, vols. 319–321, pp. 246–49.

    Article  Google Scholar 

  47. P.J. Brofman and G.S. Ansell: Metall. Mater. Trans. A, 1978, vol. 9A, pp. 879–80.

    Article  CAS  Google Scholar 

  48. W.S. Yang and C.M. Wan: J. Mater. Sci., 1990, vol. 25, pp. 1821–23.

    Article  CAS  Google Scholar 

  49. L. Lin, T.Y. Hsu, and Y Zu: Calphad, 1997, vol. 21, pp. 443–48.

    Article  Google Scholar 

  50. A.S. Hamada, L.P. Karjalainen, and M.C. Somani: Mater. Sci. Eng. A, 2007, vol. 467, pp. 114–24.

    Article  CAS  Google Scholar 

  51. P. Kusakin, A. Belyakov, C. Haase, R. Kaibyshev, and D.A. Molodov: Mater. Sci. Eng. A, 2014, vol. 617, pp. 52–60.

    Article  CAS  Google Scholar 

  52. J.P. Chateau, A. Dumay, S. Allain, and A.J. Jacques: JPCS, 2010, vol. 240, p. 012023.

    Google Scholar 

  53. X. Wang, H.S. Zurob, J.D. Embury, X. Ren, and I. Yakubtsov: Mater. Sci. Eng. A, 2010, vol. 527, pp. 3785–91.

    Article  CAS  Google Scholar 

  54. H. Wu, S. Huang, C.Y. Zhu, H.G. Zhu, and Z.H. Xie: Prog. Nat. Sci. Mater., 2020, vol. 30, pp. 239–45.

    Article  CAS  Google Scholar 

  55. X.J. Wang, X.J. Sun, C. Song, H. Chen, W. Han, and F. Pana: Mater. Sci. Eng. A, 2017, vol. 698, pp. 110–16.

    Article  CAS  Google Scholar 

  56. X.Z. Zhang, T.J. Chen, and Y.H. Qin: Mater. Des., 2016, vol. 99, pp. 182–92.

    Article  CAS  Google Scholar 

  57. Environmental Chemistry, J.K. Barbalace Inc., 1995, https://environmentalchemistry.com/yogi/perioc, Accessed 22 Oct 1995.

  58. H.H. Zhi, C. Zhang, S. Antonov, H.Y. Yu, T. Guo, and Y.J. Su: Acta Mater., 2020, vol. 195, pp. 371–82.

    Article  CAS  Google Scholar 

  59. M. Sauzay and L.P. Kubin: Progr. Mater. Sci., 2011, vol. 56, pp. 725–84.

    Article  CAS  Google Scholar 

  60. N. Gao and T.N. Baker: ISIJ, 1988, vol. 38, pp. 144–51.

    Google Scholar 

  61. P. Kusakin, A. Belyakov, D.A. Molodov, and R. Kaibyshev: Mater. Sci. Eng. A, 2017, vol. 687, pp. 82–84.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support from the National Nature Science Foundation of China (Grant Nos. 51871194 and 52001274) and the National Natural Foundation of Hebei Province, China (Grant No. E2018203312). One of the authors (YZ) acknowledges the support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No 788567, M4D).

Data Availability

The data sets generated for this study are available upon request from the corresponding author.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiaxin Zhang or Yuhui Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted February 20, 2021; accepted May 30, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Zhang, J., Xiong, J. et al. Microstructure Evolution and Tensile Properties of Cold-Rolled and Annealed Fe-30Mn-0.14C-7Cr-0.26Ni Steel. Metall Mater Trans A 52, 3839–3848 (2021). https://doi.org/10.1007/s11661-021-06345-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06345-y

Navigation