Skip to main content
Log in

The Effect of Bridge Geometry on Microstructure and Texture Evolution During Porthole Die Extrusion of an Al–Mg–Si–Mn–Cr Alloy

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Porthole die extrusion is used to produce complex hollow aluminum cross-sections for automotive applications. In a porthole die, the material is first divided into multiple streams which are separated by a bridge, before rejoining in the weld chamber and finally passing through the die orifice. The rejoining of the material in the weld chamber produces lines known as weld lines in the final extruded product. The microstructure along the weld line and its associated quality are strongly influenced by the thermal-mechanical history the material experiences as it passes through the portholes, the weld chamber, and the die orifice, which can be altered by die design and, in particular, the bridge geometry. To study the influence of bridge geometry on weld line microstructure and final quality, a series of porthole die extrusion experiments was conducted using an Al–Mg–Si–Mn–Cr alloy and two different types of bridge geometry (streamlined and flat). The experimental results showed that bridge geometry had a significant effect on the local microstructure and crystallographic texture at the weld line. Specifically, EBSD analysis indicated that the weld line texture associated with a streamlined bridge geometry consisted of a deformation texture (mainly the copper component), while the local texture produced by a flat bridge was a recrystallization texture consisting of Cube, Goss, and CubeRD texture components. Simulation of the extrusion process, using DEFORM 3D, indicated that the weld line produced using a flat bridge experienced a slightly higher temperature, but much higher equivalent strains than the streamlined case. Material away from the weld line was very similar for both cases, indicating that the effect of the die bridge geometry is localized to the region close to the weld line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. B. Lynn and J. Joe, Aluminum Extrusion Aids Auto Lightweighting. (Design News, 2015), https://cdn.ymaws.com/sites/aec.site-ym.com/resource/resmgr/PDFs/AlExtAidsAutoLtwtng_DN115289.pdf, Accessed 23 Sept 2020.

  2. 2.Y. Abe, T. Kato and K. Mori: J. Mater. Process. Technol., 2009, vol. 209, pp. 3914-3922.

    Article  CAS  Google Scholar 

  3. 3.S. Kaya: Int. J. Adv. Manuf. Technol., 2014, vol. 77, pp. 807-817.

    Article  Google Scholar 

  4. 4.J. Yu, G. Zhao and L. Chen: J. Mater. Process. Technol., 2016, vol. 230, pp. 153-166.

    Article  CAS  Google Scholar 

  5. 5.Y.A. Khan, H.S. Valberg and B.O.T. Jacobsen: Int. J. Mater. Form., 2010, vol. 3, pp. 379-382.

    Article  Google Scholar 

  6. 6.F. Gagliardi, M. Schwane, T. Citrea, M. Haase, N.B. Khalifa and A.E. Tekkaya: Key Eng. Mater., 2014, vol. 622-623, pp. 87-94.

    Article  Google Scholar 

  7. 7.F. Gagliardi, I. Alfaro, G. Ambrogio, L. Filice and E. Cueto: J. Mech. Sci. Technol., 2013, vol. 27, pp. 1089-1095.

    Article  Google Scholar 

  8. 8.F. Gagliardi, G. Ambrogio and L. Filice: Cirp Ann-Manuf. Technol., 2012, vol. 61, pp. 231-234.

    Article  Google Scholar 

  9. 9.D. Tang, W. Fang, X. Fan, T. Zou, Z. Li, H. Wang, D. Li, Y. Peng and P. Wu: Materials, 2018, vol. 12, p. 16.

    Article  CAS  Google Scholar 

  10. J. Yu, G. Zhao, C. Zhang and L. Chen: Mater. Sci. Eng. A, 2017, vol. 682, pp. 679-690.

    Article  CAS  Google Scholar 

  11. 11.G.J. Chen, L. Chen, G.Q. Zhao, C.S. Zhang and W.C. Cui: J. Alloys Compd., 2017, vol. 710, pp. 80-91.

    Article  CAS  Google Scholar 

  12. K. Zhang, K. Marthinsen, B. Holmedal, T. Aukrust and A. Segatori: Mater. Sci. Eng. A, 2018, vol. 722, pp. 20-29.

    Article  CAS  Google Scholar 

  13. 13.L. Chen, G. Chen, J. Tang, G. Zhao and C. Zhang: Mater. Charact., 2019, vol. 158, p. 109953.

    Article  CAS  Google Scholar 

  14. 14.D. Tang, X.H. Fan, W.L. Fang, D.Y. Li, Y.H. Peng and H.M. Wang: Mater. Charact., 2018, vol. 142, pp. 449-457.

    Article  CAS  Google Scholar 

  15. 15.X. Xu, G. Zhao, Y. Wang, X. Chen and C. Zhang: Vacuum, 2019, vol. 167, pp. 28-39.

    Article  CAS  Google Scholar 

  16. C.L. Liu, X. Wang, N.C. Parson, and W.J. Poole: Mater. Sci. Eng. A, 2020, p. 140605.

  17. 17.W. Fang, D. Tang, H. Wang, D. Li and Y. Peng: J. Mater. Process. Technol., 2020, vol. 277, p. 116418.

    Article  Google Scholar 

  18. C. Zhang, G. Zhao, Z. Chen, H. Chen and F. Kou: Mater. Sci. Eng. B, 2012, vol. 177, pp. 1691-1697.

    Article  CAS  Google Scholar 

  19. 19.M. Schikorra, L. Donati, L. Tomesani and A.E. Tekkaya: J. Mater. Process. Technol., 2008, vol. 201, pp. 156-162.

    Article  CAS  Google Scholar 

  20. 20.C.S. Zhang, G.Q. Zhao, Y.J. Guan, A.J. Gao, L.J. Wang and P. Li: Int. J. Adv. Manuf. Technol., 2015, vol. 78, pp. 927-937.

    Article  Google Scholar 

  21. 21.M. Schikorra, L. Donati, L. Tomesani and A.E. Tekkaya: J. Mech. Sci. Technol., 2007, vol. 21, pp. 1445-1451.

    Article  Google Scholar 

  22. C. Jowett, Y. Mahmoodkhani, N.C. Parson, and G. Garza: Proceedings of Eleventh International Aluminum Extrusion Technology Seminar and Exposition, 2016, Chicago

  23. 23.X. Duan and T. Sheppard: Metall. Mater. Trans. A, 2003, vol. 351, pp. 282-292.

    Google Scholar 

  24. 24.C.M. Sellars and W.J. McTegart: Acta Metall., 1966, vol. 14, pp. 1136-1138.

    Article  CAS  Google Scholar 

  25. X. Qian, N. Parson and X.G. Chen: Mater. Sci. Eng. A, 2019, vol. 764, p. 138253.

    Article  CAS  Google Scholar 

  26. 26.C. Sellars and W.M. Tegart: Int. Metall. Rev., 1972, vol. 17, pp. 1-24.

    Article  CAS  Google Scholar 

  27. 27.T. Sheppard and D. Wright: Met. Technol., 1979, vol. 6, pp. 215-223.

    Article  CAS  Google Scholar 

  28. 28.S.M. Lou, Y.X. Wang, C.X. Liu, S. Lu, S.J. Liu and C.J. Su: J. Mater. Eng. Perform., 2017, vol. 26, pp. 4121-4130.

    Article  CAS  Google Scholar 

  29. 29.C. Zhang, M. Wen, G. Zhao, L. Chen, W. Sun and K. Bai: Thin Wall Struct., 2019, vol. 135, pp. 65-77.

    Article  Google Scholar 

  30. 30.T. Sheppard and A. Jackson: Mater. Sci. Technol., 1997, vol. 13, pp. 203-209.

    Article  CAS  Google Scholar 

  31. 31.Y. Liu, C. Geng, Q. Lin, Y. Xiao, J. Xu and W. Kang: J. Alloys Compd., 2017, vol. 713, pp. 212-221.

    Article  CAS  Google Scholar 

  32. 32.Y. Mahmoodkhani, J. Chen, M.A. Wells, W.J. Poole and N.C. Parson: Metall. Mater. Trans. A, 2019, vol. 50, pp. 5324-5335.

    Article  Google Scholar 

  33. 33.Y. Mahmoodkhani, M.A. Wells, N. Parson and W.J. Poole: J. Mater. Process. Technol., 2014, vol. 214, pp. 688-700.

    Article  CAS  Google Scholar 

  34. 34.N. Nanninga, C. White, O. Mills and J. Lukowski: Int. J. Fatigue, 2010, vol. 32, pp. 238-246.

    Article  CAS  Google Scholar 

  35. 35.A.J. den Bakker, X. Wu, L. Katgerman and S. van der Zwaag: Mater. Sci. Technol., 2015, vol. 31, pp. 94-104.

    Article  Google Scholar 

  36. 36.X.H. Fan, D. Tang, W.L. Fang, D.Y. Li and Y.H. Peng: Mater. Charact., 2016, vol. 118, pp. 468-480.

    Article  CAS  Google Scholar 

  37. Z.J. Wang, L. Zhai, M. Ma, H. Yuan and W.C. Liu: Mater. Sci. Eng. A, 2015, vol. 644, pp. 194-203.

    Article  CAS  Google Scholar 

  38. 38.G. Liu, J. Zhou and J. Duszczyk: J. Mater. Process. Technol., 2008, vol. 200, pp. 185-198.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was undertaken, in part, thanks to funding from the Canada Research Chair program (Poole). Additional support was provided by Rio Tinto Aluminum, the Ford Motor Company, and NSERC Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 18, 2020; accepted April 30, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zang, A., Mahmoodkhani, Y. et al. The Effect of Bridge Geometry on Microstructure and Texture Evolution During Porthole Die Extrusion of an Al–Mg–Si–Mn–Cr Alloy. Metall Mater Trans A 52, 3503–3516 (2021). https://doi.org/10.1007/s11661-021-06322-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06322-5

Navigation