Skip to main content
Log in

Microstructure and Wear Behavior of High-Carbon Concentration CrCoNi Multi-principal Element Alloys

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

CrCoNi multi-principal element alloys (MPEAs) have shown good strength-ductility combinations, but few other mechanical properties have been evaluated in these alloys so far. Although optimal wear-resistant alloys depend upon the intended application, a hard and tough material is often desirable. In this work, as-cast Cr40Co40Ni20 was tested for wear under dry-sliding conditions against an alumina pin, exhibiting good wear resistance and low coefficient of friction (CoF) of 0.12. To further improve the wear behavior, carbon (C) additions were evaluated in this alloy and in Cr40Co30Ni30, up to the liquid solubility limit at 1600 °C (~24 at. pct C). Alloy design was performed using computational thermodynamic calculations. Predicted microstructures contain: self-lubricating graphite flakes, hard primary Cr-rich carbides, and a tough eutectic matrix; in good agreement with experimental results. As-cast Cr40Co40Ni20-C, even without microstructural refinement, displayed low specific wear rate (on the order of 10−4 mm3/Nm) and moderate CoF (0.55-0.62). Its performance was hampered by the fracture and detachment of coarse primary carbides, which introduced an additional abrasive element into the tribosystem. These findings indicate that C additions to CrCoNi alloys, along with the refinement of primary carbides, represent a promising strategy to further improve the wear performance of MPEAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. 1 K. Holmberg and A. Erdemir: Friction, 2017, vol. 5, pp. 263–84.

    Article  CAS  Google Scholar 

  2. 2 J. Sugishita and S. Fujiyoshi: Wear, 1981, vol. 66, pp. 209–21.

    Article  CAS  Google Scholar 

  3. 3 J.R. Davis: ASM Specialty Handbook: Cast Irons, ASM international, United States of America, 1996.

    Google Scholar 

  4. 4 A. Zhang, J. Han, B. Su, P. Li, and J. Meng: Mater. Des., 2017, vol. 114, pp. 253–63.

    Article  CAS  Google Scholar 

  5. 5 S. Yadav, A. Kumar, and K. Biswas: Mater. Chem. Phys., 2018, vol. 210, pp. 222–32.

    Article  CAS  Google Scholar 

  6. 6 S. Yadav, S. Sarkar, A. Aggarwal, A. Kumar, and K. Biswas: Wear, 2018, vol. 410–411, pp. 93–109.

    Article  Google Scholar 

  7. 7 A.S. Sharma, S. Yadav, K. Biswas, and B. Basu: Mater. Sci. Eng. R Reports, 2018, vol. 131, pp. 1–42.

    Article  Google Scholar 

  8. P. Crook: in ASM Handbook Vol. 2: Properties and Selection: Nonferrous Alloys and Special- Purpose Materials, vol. 2, ASM International, 1990, pp. 446–54.

  9. 9 X.H. Tang, R. Chung, C.J. Pang, D.Y. Li, B. Hinckley, and K. Dolman: Wear, 2011, vol. 271, pp. 1426–31.

    Article  CAS  Google Scholar 

  10. 10 B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent: Mater. Sci. Eng. A, 2004, vol. 375, pp. 213–8.

    Article  Google Scholar 

  11. 11 J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang: Adv. Eng. Mater., 2004, vol. 6, pp. 299–303.

    Article  CAS  Google Scholar 

  12. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie: Science, 2014, vol. 345, pp. 1153–8.

    Article  CAS  Google Scholar 

  13. 13 B. Gludovatz, A. Hohenwarter, K.V.S. Thurston, H. Bei, Z. Wu, E.P. George, and R.O. Ritchie: Nat. Commun., 2016, vol. 7, pp. 1–8.

    Article  Google Scholar 

  14. 14 D.B. Miracle and O.N. Senkov: Acta Mater., 2017, vol. 122, pp. 448–511.

    Article  CAS  Google Scholar 

  15. 15 W. Zhang, P.K. Liaw, and Y. Zhang: Sci. China Mater., 2018, vol. 61, pp. 2–22.

    Article  CAS  Google Scholar 

  16. 16 E.P. George, D. Raabe, and R.O. Ritchie: Nat. Rev. Mater., 2019, vol. 4, pp. 515–34.

    Article  CAS  Google Scholar 

  17. 17 F.G. Coury, D. Santana, Y. Guo, J. Copley, L. Otani, S. Fonseca, G. Zepon, C. Kiminami, M. Kaufman, and A. Clarke: Scr. Mater., 2019, vol. 173, pp. 70–4.

    Article  CAS  Google Scholar 

  18. 18 F.G. Coury, P. Wilson, K.D. Clarke, M.J. Kaufman, and A.J. Clarke: Acta Mater., 2019, vol. 167, pp. 1–11.

    Article  CAS  Google Scholar 

  19. 19 F.G. Coury, K.D. Clarke, C.S. Kiminami, M.J. Kaufman, and A.J. Clarke: Sci. Rep., 2018, vol. 8, pp. 1–10.

    Article  CAS  Google Scholar 

  20. 20 R.O. Ritchie: Nat. Mater., 2011, vol. 10, pp. 817–22.

    Article  CAS  Google Scholar 

  21. 21 Z. Wu, H. Bei, G.M. Pharr, and E.P. George: Acta Mater., 2014, vol. 81, pp. 428–41.

    Article  CAS  Google Scholar 

  22. 22 S. Yoshida, T. Bhattacharjee, Y. Bai, and N. Tsuji: Scr. Mater., 2017, vol. 134, pp. 33–6.

    Article  CAS  Google Scholar 

  23. 23 G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, and E.P. George: Acta Mater., 2017, vol. 128, pp. 292–303.

    Article  CAS  Google Scholar 

  24. 24 S.F. Liu, Y. Wu, H.T. Wang, J.Y. He, J.B. Liu, C.X. Chen, X.J. Liu, H. Wang, and Z.P. Lu: Intermetallics, 2018, vol. 93, pp. 269–73.

    Article  CAS  Google Scholar 

  25. 25 K. Feng, Y. Zhang, Z. Li, C. Yao, L. Yao, and C. Fan: Surf. Coatings Technol., 2020, vol. 397, p. 126004.

    Article  CAS  Google Scholar 

  26. 26 J. Miao, C.E. Slone, T.M. Smith, C. Niu, H. Bei, M. Ghazisaeidi, G.M. Pharr, and M.J. Mills: Acta Mater., 2017, vol. 132, pp. 35–48.

    Article  CAS  Google Scholar 

  27. 27 C. Niu, C.R. LaRosa, J. Miao, M.J. Mills, and M. Ghazisaeidi: Nat. Commun., 2018, vol. 9, pp. 1–9.

    Article  Google Scholar 

  28. 28 C.E. Slone, S. Chakraborty, J. Miao, E.P. George, M.J. Mills, and S.R. Niezgoda: Acta Mater., 2018, vol. 158, pp. 38–52.

    Article  CAS  Google Scholar 

  29. 29 Y.Y. Shang, Y. Wu, J.Y. He, X.Y. Zhu, S.F. Liu, H.L. Huang, K. An, Y. Chen, S.H. Jiang, H. Wang, X.J. Liu, and Z.P. Lu: Intermetallics, 2019, vol. 106, pp. 77–87.

    Article  CAS  Google Scholar 

  30. 30 P.A. Beaven, P.R. Swann, and D.R.F. West: J. Mater. Sci., 1979, vol. 14, pp. 354–64.

    Article  CAS  Google Scholar 

  31. 31 Z. Wu, C.M. Parish, and H. Bei: J. Alloys Compd., 2015, vol. 647, pp. 815–22.

    Article  CAS  Google Scholar 

  32. 32 N.D. Stepanov, N.Y. Yurchenko, M.A. Tikhonovsky, and G.A. Salishchev: J. Alloys Compd., 2016, vol. 687, pp. 59–71.

    Article  CAS  Google Scholar 

  33. 33 J. Chen, Z. Yao, X. Wang, Y. Lu, X. Wang, Y. Liu, and X. Fan: Mater. Chem. Phys., 2018, vol. 210, pp. 136–45.

    Article  CAS  Google Scholar 

  34. 34 J. Peng, Z. Li, L. Fu, X. Ji, Z. Pang, and A. Shan: J. Alloys Compd., 2019, vol. 803, pp. 491–8.

    Article  CAS  Google Scholar 

  35. 35 L. Guo, X. Ou, S. Ni, Y. Liu, and M. Song: Mater. Sci. Eng. A, 2019, vol. 746, pp. 356–62.

    Article  CAS  Google Scholar 

  36. 36 I. Baker: Metals (Basel)., 2020, vol. 10, pp. 1–20.

    Article  Google Scholar 

  37. 37 J. Miao, T. Guo, J. Ren, A. Zhang, B. Su, and J. Meng: Vacuum, 2018, vol. 149, pp. 324–30.

    Article  CAS  Google Scholar 

  38. 38 S. Pan, C. Zhao, P. Wei, and F. Ren: Wear, 2019, vol. 440–441, pp. 1–13.

    Google Scholar 

  39. 39 M. Chen, X.H. Shi, H. Yang, P.K. Liaw, M.C. Gao, J.A. Hawk, and J. Qiao: J. Mater. Res., 2018, vol. 33, pp. 3310–20.

    Article  CAS  Google Scholar 

  40. 40 J.M. Wu, S.J. Lin, J.W. Yeh, S.K. Chen, Y.S. Huang, and H.C. Chen: Wear, 2006, vol. 261, pp. 513–9.

    Article  CAS  Google Scholar 

  41. 41 A. Ayyagari, C. Barthelemy, B. Gwalani, R. Banerjee, T.W. Scharf, and S. Mukherjee: Mater. Chem. Phys., 2018, vol. 210, pp. 162–9.

    Article  CAS  Google Scholar 

  42. 42 W. Lu, X. Luo, Y. Yang, J. Zhang, and B. Huang: Mater. Chem. Phys., 2019, vol. 238, p. 121841.

    Article  CAS  Google Scholar 

  43. 43 H.U. Hong, B.S. Rho, and S.W. Nam: Mater. Sci. Eng. A, 2001, vol. 318, pp. 285–92.

    Article  Google Scholar 

  44. 44 X. Wu, J. Xing, H. Fu, and X. Zhi: Mater. Sci. Eng. A, 2007, vol. 457, pp. 180–5.

    Article  Google Scholar 

  45. 45 Y. Qu, J. Xing, X. Zhi, J. Peng, and H. Fu: Mater. Lett., 2008, vol. 62, pp. 3024–7.

    Article  CAS  Google Scholar 

  46. 46 X. Zhi, J. Liu, J. Xing, and S. Ma: Mater. Sci. Eng. A, 2014, vol. 603, pp. 98–103.

    Article  CAS  Google Scholar 

  47. 47 H. Lv, R. Zhou, L. Li, H. Ni, J. Zhu, and T. Feng: Materials (Basel)., 2018, vol. 11, pp. 12–4.

    Google Scholar 

  48. Sterneland, T., Markström, A., Norgren, S., Aaune, R. E., & Seetharaman, S (2006) Metall. Mater. Trans. A, vol. 37A, pp. 3023–8.

    Article  CAS  Google Scholar 

  49. B. Kaplan, A. Blomqvist, C. Århammar, M. Selleby, and S. Norgren: 18th Plansee Semin. 3–7 June, 2013 Reutte, Austria, 2013, vol. 3, p. HM104/1-HM104/12.

  50. B. Kaplan, A. Markström, S. Norgren, and M. Selleby: Metall. Mater. Trans. A 2014, vol. 45, pp. 4820–8.

    Article  Google Scholar 

  51. 51 R.J. Chung, X. Tang, D.Y. Li, B. Hinckley, and K. Dolman: Wear, 2009, vol. 267, pp. 356–61.

    Article  CAS  Google Scholar 

  52. 52 R.J. Chung, X. Tang, D.Y. Li, B. Hinckley, and K. Dolman: Wear, 2013, vol. 301, pp. 695–706.

    Article  CAS  Google Scholar 

  53. 53 L.M. Du, L.W. Lan, S. Zhu, H.J. Yang, X.H. Shi, P.K. Liaw, and J.W. Qiao: J. Mater. Sci. Technol., 2019, vol. 35, pp. 917–25.

    Article  Google Scholar 

  54. 54 R.P. Kusy, J.Q. Whitley, and M.J. Prewitt: Angle Orthod, 1991, vol. 61, pp. 293–302.

    CAS  Google Scholar 

  55. 55 Y. Guilmard, J. Denape, and J.A. Petit: Tribol. Int., 1993, vol. 26, pp. 29–39.

    Article  CAS  Google Scholar 

  56. 56 Y.H. Wu, H.J. Yang, R.P. Guo, X.J. Wang, X.H. Shi, P.K. Liaw, and J.W. Qiao: Wear, 2020, vol. 460–461, pp. 1–13.

    Google Scholar 

  57. A. Saeed-Akbari, J. Imlau, U. Prahl, and W. Bleck: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 3076–90.

    Article  CAS  Google Scholar 

  58. 58 Y. Ikeda, I. Tanaka, J. Neugebauer, and F. Körmann: Phys. Rev. Mater., 2019, vol. 3, pp. 1–15.

    Google Scholar 

  59. 59 G.B. Olson and M. Cohen: Metall. Trans. A, 1976, vol. 7A, pp. 1897–904.

    CAS  Google Scholar 

  60. 60 B.C. De Cooman, Y. Estrin, and S.K. Kim: Acta Mater., 2018, vol. 142, pp. 283–362.

    Article  Google Scholar 

  61. 61 A.L. Bowman, G.P. Arnold, E.K. Storms, and N.G. Nereson: Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem., 1972, vol. 28, pp. 3102–3.

    Article  CAS  Google Scholar 

  62. 62 J. Glaser, R. Schmitt, and H.-J. Meyer: Zeitschrift für Naturforsch. B, 2003, vol. 58, pp. 929–33.

    CAS  Google Scholar 

  63. 63 B. Xiao, J.D. Xing, J. Feng, Y.F. Li, C.T. Zhou, W. Su, X.J. Xie, and Y.H. Chen: Phys. B Condens. Matter, 2008, vol. 403, pp. 2273–81.

    Article  CAS  Google Scholar 

  64. 64 N. P. Suh: Wear, 1973, vol. 25, pp. 111–24.

    Article  CAS  Google Scholar 

  65. 65 M. Amiri and M.M. Khonsari: Entropy, 2010, vol. 12, pp. 1021–49.

    Article  CAS  Google Scholar 

  66. 66 Q. Chen and D.Y. Li: Wear, 2005, vol. 259, pp. 1382–91.

    Article  CAS  Google Scholar 

  67. 67 Y. Chen, Y. Li, S. Kurosu, K. Yamanaka, N. Tang, Y. Koizumi, and A. Chiba: Wear, 2014, vol. 310, pp. 51–62.

    Article  CAS  Google Scholar 

  68. I. Hutchings and P. Shipway: Tribology: Friction and Wear of Engineering Material, 2nd edn., Elsevier, Amsterdam, 2017.

    Google Scholar 

  69. K.-H. Zumahr: Microstructure and Wear of Materials, Elsevier, Amsterdam, 1987.

    Google Scholar 

  70. 70 Z. Huang, J. Xing, and A. Zhang: J Mater Sci Technol, 2006, vol. 22, pp. 775–8.

    Article  CAS  Google Scholar 

  71. R. Ghasemi and L. Elmquist: 10th Inter. Symp. Sci. Process. Cast. Iron. – SPCI10, 2014, pp. 1–7.

  72. 72 Q.C. Li, R.X. Li, X.D. Yue, G.W. Chang, and Q.J. Zhai: Mater. Chem. Phys., 2008, vol. 112, pp. 402–6.

    Article  CAS  Google Scholar 

  73. 73 Y. Hao, J. Li, X. Li, W. Liu, G. Cao, C. Li, and Z. Liu: J. Mater. Process. Technol., 2020, vol. 275, pp. 1–9.

    Google Scholar 

Download references

Acknowledgments

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES)-Finance Code 001; by Fundação de Amparo à Pesquisa do Estado de São Paulo-Brasil (FAPESP), [Grant Numbers 2019/00229-4 and 2019/21133-5]; and by Conselho Nacional de Desenvolvimento Científico e Tecnológico-Brasil (CNPq) [grant number 424645/2018-1]. The authors thank the Laboratory of Structural Characterization (LCE/DEMa/ UFSCar) for the general facilities. Also, the authors would like to thank Drs. Fan Zhang and Chuan Zhang as well as COMPUTHERM® for providing a Pandat® software license and the necessary databases for performing the calculations shown here. AJC acknowledges the support of the US Department of the Navy, Office of Naval Research under ONR award number N00014-18-1-2567 during the preparation of this manuscript. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Office of Naval Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Bertoli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 12, 2021; April 13, 2021.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 361 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertoli, G., Koga, G.Y., Puosso, F.C. et al. Microstructure and Wear Behavior of High-Carbon Concentration CrCoNi Multi-principal Element Alloys. Metall Mater Trans A 52, 3034–3050 (2021). https://doi.org/10.1007/s11661-021-06297-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06297-3

Navigation