Skip to main content
Log in

Investigation on Hot Workability of Ti-37 At Pct Nb Alloy Based on Processing Map and Microstructural Evolution

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Ti-37 at pct Nb alloy has been successfully applied to engineering fields because of its excellent superconductivity and perfect ductility. The TiNb alloy is necessary to optimize hot processing parameters and further investigate hot workability. Consequently, a processing map of TiNb alloy is constructed based on dynamic material modeling via stress–strain curves at 700 °C to 1000 °C and 0.0005 to 0.5 s−1. The results show that one appropriate working domain is where the temperature range is about 765 °C to 910 °C and the strain rate is simultaneously < 0.0007 s−1, and another appropriate working domain is where the temperature range is about 960 °C to 1000 °C and simultaneously the strain rate range is about 0.002 to 0.1 s−1. Microstructures of TiNb samples, which are deformed in the instability processing domain with the high strain rate of 0.5 s−1, are further characterized to reveal dependence of the processing map on microstructures, and thus it is found that dynamic recovery and incomplete dynamic recrystallization cannot effectively improve the heterogeneous microstructure of TiNb alloy samples during deformation under a high strain rate. In addition, θ- and γ-fiber textures are found in the deformed TiNb specimens, and high deformation temperature contributes to the formation of the θ-fiber texture.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. [1] Y.W. Chai, H.Y. Kim, H. Hosoda and S. Miyazaki: Acta Mater., 2009, vol. 57, pp. 4054-4064.

    Article  CAS  Google Scholar 

  2. [2] B. Sun, X.L. Meng, Z.Y. Gao, W. Cai and L.C. Zhao: J. Alloy Compd., 2017, vol. 715, pp. 16-20.

    Article  CAS  Google Scholar 

  3. [3] S. Santra, T. Davies, G. Matthews, J. Liu, C.R.M. Grovenor and S.C. Speller: Mater. Des., 2019, vol. 176, pp. 107836.

    Article  CAS  Google Scholar 

  4. [4] T. Schild, J. L. Duchateau: Physica C, 1998, vol. 310, pp. 247-252.

    Article  CAS  Google Scholar 

  5. [5] P. Bruzzone, B. Stepanov and E. Zapretilina: Fusion Eng Des., 2005, vol. 75-79, pp. 111-115.

    Article  Google Scholar 

  6. [6] J.F. Li, P.X. Zhang, X.H. Liu, J.S. Li, Y. Feng, S.J. Du, T.C. Wang, W.T. Liu, G. Grunblatt, C. Verwaerde and G.K. Hoang: Physica C, 2008, vol. 468, pp. 1840-1842.

    Article  CAS  Google Scholar 

  7. [7] H.Y. Kim, J.I. Kim, T. Inamura, H. Hosoda and S. Miyazaki: Mater. Sci. Eng. A, 2006, vol. 438-440, pp. 839-843.

    Article  Google Scholar 

  8. [8] H.Y. Kim, Y. Ikehara, J.I. Kim, H. Hosoda and S. Miyazaki: Acta Mater., 2006, vol. 54, pp. 2419-2429.

    Article  CAS  Google Scholar 

  9. [9] Y. Guo, K. Georgarakis, Y. Yokoyama and A.R. Yavari: J. Alloy Compd., 2013, vol. 571, pp. 25-30.

    Article  CAS  Google Scholar 

  10. [10] I.V. Okulov, A.S. Volegov, H. Attar, M. Bönisch, S. Ehtemam-Haghighi, M. Calin and J. Eckert: J. Mech. Behav. Biomed., 2017, vol. 65, pp. 866-871.

    Article  CAS  Google Scholar 

  11. [11] Q.K. Meng, J.S. Zhang, Y.F. Huo, Y.W. Sui, J.Y. Zhang, S. Guo and X.Q. Zhao: J. Alloy Compd., 2018, vol. 45, pp. 579-585.

    Article  Google Scholar 

  12. [12] A. Bahador, E. Hamzah, K. Kondoh, T.A.A. Bakar, F. Yusof, H. Imai, S.N. Saud and M.K. Ibrahim: Mater. Des., 2017, vol. 118, pp. 152-162.

    Article  CAS  Google Scholar 

  13. [13] M.N. Wilson: Cryogenics, 2008, vol. 48, pp. 381-395.

    Article  CAS  Google Scholar 

  14. [14] F. Mokdad, D.L. Chen, Z.Y. Liu, D.R. Ni, B.L. Xiao and Z.Y. Ma: Mater. Sci. Eng. A, 2017, vol. 702, pp. 425-437.

    Article  CAS  Google Scholar 

  15. [15] J. Lu, Y.L. Song, L. Hua, K.L. Zheng and D.G. Dai: J. Alloy Compd., 2018, vol. 767, pp. 856-869.

    Article  CAS  Google Scholar 

  16. [16] H. Rastegari, A. Kermanpur, A. Najafizadeh, D. Porter and M. Somani: J. Alloy Compd., 2015, vol. 626, pp. 136-144.

    Article  CAS  Google Scholar 

  17. [17] X.C. Ma, Z.J. An, L. Chen, T.Q. Mao, J.F. Wang, H.J. Long, H.Y. Xue: Mater. Des., 2015, vol. 86, pp. 848-854.

    Article  CAS  Google Scholar 

  18. [18] W.C. Xu, X.Z. Jin, W.D. Xiong, X.Q. Zeng and D.B. Shan: Mater. Charact., 2018, vol. 135, pp. 154-166.

    Article  CAS  Google Scholar 

  19. [19] S. Gangolu, A.G. Rao, I. Sabirov, B.P. Kashyap, N. Prabhu and V.P. Deshmukh: Mater. Sci. Eng. A, 2016, vol. 655, pp. 256-264.

    Article  CAS  Google Scholar 

  20. [20] H.L. He, Y.P. Yi, J.D. Cui and S.Q. Huang: Vacuum, 2019, vol. 160, pp. 293-302.

    Article  CAS  Google Scholar 

  21. [21] V. Sharma, S.A.S. Namburu, P. Lalwani, C.K. Sagar and A.K. Gupta: Int. J. Refract. Met. H., 2018, vol. 6, pp. 168-179.

    Article  Google Scholar 

  22. [22] Q.G. Meng, C.G. Bai and D.S. Xu: J. Mater. Sci. Technol., 2018, vol. 34, pp. 679-688.

    Article  Google Scholar 

  23. [23] Y.V.R.K. Prasad, S. Sasidhara and V. K. Sikka: Intermetallics., 2000, vol. 8, pp. 987-995.

    Article  CAS  Google Scholar 

  24. [24] H. Ziegler and L. K. Yu: Ingenieur-Archiv, 1972, vol. 41, pp. 89-99.

    Article  Google Scholar 

  25. [25] C. H. Park, Y. G. Ko, C. S. Lee, K.-T. Park, D.H. Shin and H.S. Lee: Mater. Sci. Forum, 2007, vol. 551-552, pp. 365-372.

    Article  Google Scholar 

  26. [26] S. Venuqopal and P. V. Sivaprasad: J. Mater. Eng. Perform., 2003, vol. 12, pp. 674-686.

    Article  Google Scholar 

  27. [27] Y. V. R. K. Prasad and T. Seshacharyulu: Mater. Sci. Eng. A, 1998, vol. 243, pp. 82-88.

    Article  Google Scholar 

  28. [28] O.B. Bembalge and S.K. Panigrahi: Int. J. Mech. Sci., 2021, vol. 191, pp. 106100.

    Article  Google Scholar 

  29. [29] L. Li and M.Q. Li: Mater. Sci. Eng. A, 2017, vol. 698, pp. 302-312.

    Article  CAS  Google Scholar 

  30. [30] Y.V.R.K. Prasad, K.P. Rao and S. Sasidhara: Hot working guide: a compendium of processing maps, 2nd ed., Materials Park, Ohio: ASM International,1997.

    Google Scholar 

  31. [31] Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark and D.R. Barker: Metall. Trans. A, 1984, vol. 15, pp. 1883-1892.

    Article  Google Scholar 

  32. [32] Y. Sun, X. Feng, L. Hu, H. Zhang and H. Zhang: J. Alloy Compd., 2018, vol. 53, pp. 256-271.

    Article  Google Scholar 

  33. [33] T.Y. Kwak and W.J. Kim: J. Mater. Sci. Technol., 2019, vol. 35, pp. 181-191.

    Article  Google Scholar 

  34. [34] B. Gong, X.W. Duan, J.S. Liu and J.J. Liu: Vacuum, 2018, vol. 155, pp. 345-357.

    Article  CAS  Google Scholar 

  35. [35] Y.V.R.K. Prasad and T. Seshacharyulu: Int. Mater. Rev., 1998, vol. 43, pp. 243-258.

    Article  CAS  Google Scholar 

  36. [36] Z.X. Shi, X.F. Yan, C.H. Duan: J. Alloy Compd., 2015, vol. 625, pp. 30-38.

    Article  Google Scholar 

  37. [37] M. Sarebanzadeh, R. Mahmudi and R. Roumina: Mater. Sci. Eng. A, 2015, vol. 637, pp. 155-161.

    Article  CAS  Google Scholar 

  38. [38] L.P. Su, H.Y. Liu, L. Jing, Z.T. Yu, W.X. Wang and L. Zhou: J. Alloy Compd., 2019, vol. 797, pp. 735-743.

    Article  CAS  Google Scholar 

  39. [39] F. Zhang, J.L. Sun, J. Shen, X.D. Yan and J. Chen: Mater. Sci. Eng. A, 2014, vol. 613, pp. 141-147.

    Article  CAS  Google Scholar 

  40. [40] Z. Wang, X.N. Wang and Z.S. Zhu: J. Alloy Compd., 2017, vol. 692, pp. 149-154.

    Article  CAS  Google Scholar 

  41. [41] K. Huang and R.E. Logé: Mater. Des., 2016, vol. 111, pp. 548-574.

    Article  CAS  Google Scholar 

  42. [42] E. Ghasemi, A. Zarei-Hanzaki, E. Farabi, K. Tesař, A. Jäger and M. Rezaee: J. Alloy Compd., 2017, vol. 695, pp. 1706-1718.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 51475101 and 51871070).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanqiu Zhang or Shuyong Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted January 27, 2021; accepted March 26, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, D., Zhang, Y., Jiang, S. et al. Investigation on Hot Workability of Ti-37 At Pct Nb Alloy Based on Processing Map and Microstructural Evolution. Metall Mater Trans A 52, 2830–2844 (2021). https://doi.org/10.1007/s11661-021-06276-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06276-8

Navigation