Skip to main content
Log in

Role of Processing in Microstructural Evolution in Inconel 625: A Comparison of Three Additive Manufacturing Techniques

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Additive manufacturing (AM) processes have widely varying thermal environments, which dictate the solidification of alloys during solidification. Here, we use binder jet 3D printing (BJ3DP), electron beam freeform fabrication (EBF3), and direct metal laser sintering (DMLS) to fabricate samples of Inconel 625, displaying the significant differences in microstructure brought about purely by the thermal gradients produced in each manufacturing method. Dislocation density and elastic strain are measured using high-resolution electron backscatter diffraction and the spatial relationship between these features is analyzed with respect to the relative thermal environments of each AM technique, with DMLS exhibiting microstructure typical of high thermal gradients and rapid solidification. Increasing thermal gradient and solidification rate results in a stronger spatial dependence of microscale elastic strain on GND density. Our results also demonstrate the use of statistical techniques to quantify microstructural features in relation to processing, which has potential for informing frameworks which can predict microstructure and material properties of AM components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T. Debroy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, and W. Zhang: Prog. Mater. Sci. 92, 112–124 (2018). https://doi.org/10.1016/j.pmatsci.2017.10.001.

    Article  CAS  Google Scholar 

  2. R. Liu, Z. Wang, T. Sparks, F. Liou, and J. Newkirk: in Laser Additive Manufacturing: Materials, Design, Technologies, and Applications, Elsevier Inc., Amsterdam, 2017, pp. 351–71.

    Google Scholar 

  3. P.D. Enrique, E. Marzbanrad, Y. Mahmoodkhani, Z. Jiao, E. Toyserkani, and N.Y. Zhou: Surf. Coatings Technol., 2019, vol. 362, pp. 141–9.

    CAS  Google Scholar 

  4. L.E. Murr, S.M. Gaytan, D.A. Ramirez, E. Martinez, J. Hernandez, K.N. Amato, P.W. Shindo, F.R. Medina, and R.B. Wicker: J. Mater. Sci. Technol., 2012, vol. 28, 1–14.

    CAS  Google Scholar 

  5. Y.-L. Hao, S.-J. Li, and R. Yang: Rare Met., 2016, vol. 35, pp. 661–71.

    CAS  Google Scholar 

  6. J.J. Lewandowski and M. Seifi: Annu. Rev. Mater. Res., 2016, vol. 46, pp. 151–86.

    CAS  Google Scholar 

  7. A. Mostafaei, E.L. Stevens, E.T. Hughes, S.D. Biery, C. Hilla, and M. Chmielus: Mater. Des., 2016, vol. 108, pp. 126–35.

    CAS  Google Scholar 

  8. A. Mostafaei, J. Toman, E.L. Stevens, E.T. Hughes, Y.L. Krimer, and M. Chmielus: Acta Mater., 2017, vol. 124, pp. 280–9.

    CAS  Google Scholar 

  9. K. Taminger and R. Hafley: Proc. 3rd Annu. Automot. Compos. Conf., 2003, pp. 9–10.

  10. Y. Tian, D. McAllister, H. Colijn, M. Mills, D. Farson, M. Nordin, and S. Babu: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2014, vol. 45A, pp. 4470–83.

  11. X. Zhao, J. Chen, X. Lin, and W. Huang: Mater. Sci. Eng. A, 2008, vol. 478, pp. 119–24.

    Google Scholar 

  12. T.M. Rodgers, J.D. Madison, and V. Tikare: Comput. Mater. Sci., 2017, vol. 135, pp. 78–89.

    Google Scholar 

  13. L.M. Suave, J. Cormier, P. Villechaise, A. Soula, Z. Hervier, D. Bertheau, and J. Laigo: Metall. Mater. Trans. A, 2014, vol. 45, pp. 2963–82.

    Google Scholar 

  14. M.R. Stoudt, E.A. Lass, D.S. Ng, M.E. Williams, F. Zhang, C.E. Campbell, G. Lindwall, and L.E. Levine: Metall. Mater. Trans. A, 2018, vol. 49, pp. 3028–37.

    CAS  Google Scholar 

  15. E. Popova, T.M. Rodgers, X. Gong, A. Cecen, J.D. Madison, and S.R. Kalidindi: Integr. Mater. Manuf. Innov., 2017, vol. 6, pp. 54–68.

    Google Scholar 

  16. B. Yuan, G.M. Guss, A.C. Wilson, S.P. Hau‐Riege, P.J. DePond, S. McMains, M.J. Matthews, and B. Giera: Adv. Mater. Technol., 2018, vol. 3, p. 1800136.

    Google Scholar 

  17. P. Nandwana, A.M. Elliott, D. Siddel, A. Merriman, W.H. Peter, and S.S. Babu: Curr. Opin. Solid State Mater. Sci., 2017, 21(4):207–218.

    CAS  Google Scholar 

  18. K. Kimes, K. Myers, A. Klein, M. Ahlfors, E. Stevens, and M. Chmielus: Microsc. Microanal., 2019, vol. 25, pp. 2600–1.

    Google Scholar 

  19. R. Hafley, K.M.B. Taminger, and R. Bird: AIAA Papers, 2007, pp. 1–9.

  20. S.C. Joshi and A.A. Sheikh: Virtual Phys. Prototyp., 2015, vol. 10, pp. 111–75.

    Google Scholar 

  21. X. Shu, G. Chen, J. Liu, B. Zhang, and J. Feng: Mater. Lett., 2018, vol. 213, pp. 374–7.

    CAS  Google Scholar 

  22. J. Xu, J. Zhu, J. Fan, Q. Zhou, Y. Peng, and S. Guo: Vacuum, 2019, vol. 167, pp. 364–73.

    CAS  Google Scholar 

  23. K.M. Taminger and R.A. Hafley: NATO/RTOAVT.

  24. J. Gockel, J. Beuth, and K. Taminger: Addit. Manuf., 2014, vol. 1, pp. 119–26.

    Google Scholar 

  25. L.M. Sochalski-Kolbus, E.A. Payzant, P.A. Cornwell, T.R. Watkins, S.S. Babu, R.R. Dehoff, M. Lorenz, O. Ovchinnikova, and C. Duty: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2015, vol. 46, pp. 1419–32.

  26. A.K. Agrawal, G. Meric de Bellefon, and D. Thoma: Mater. Sci. Eng. A., 2020, vol. 793, 139841. https://doi.org/10.1016/j.msea.2020.139841.

  27. A.E. Patterson, S.L. Messimer, and P.A. Farrington: Technologies, 2017, vol. 5, p. 15.

    Google Scholar 

  28. G. Nicoletto, R. Konečná, M. Frkáň, and E. Riva: Int. J. Fatigue, 2018, vol. 116, pp. 140–8.

    CAS  Google Scholar 

  29. D.W. Brown, J.D. Bernardin, J.S. Carpenter, B. Clausen, D. Spernjak, and J.M. Thompson: Mater. Sci. Eng. A, 2016, vol. 678, pp. 291–8.

    CAS  Google Scholar 

  30. Z. Wang, E. Denlinger, P. Michaleris, A.D. Stoica, D. Ma, and A.M. Beese: Mater. Des., 2017, vol. 113, pp. 169–77.

    CAS  Google Scholar 

  31. P.J. Withers, H.K.D.H. Bhadeshia, P.J. Withers, and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 2001, vol. 17(4), pp. 355–65. https://doi.org/10.1179/026708301101509980.

  32. T.B. Britton and A.J. Wilkinson: Ultramicroscopy, 2011, vol. 111, pp. 1395–404.

    CAS  Google Scholar 

  33. A.J. Wilkinson, G. Meaden, and D.J. Dingley: Ultramicroscopy, 2006, vol. 106, pp. 307–13.

    CAS  Google Scholar 

  34. K.A. Small, Z. Clayburn, R. DeMott, S. Primig, D. Fullwood, and M.L. Taheri: Mater. Sci. Eng. A, 2020, vol. 785, p. 139380.

    CAS  Google Scholar 

  35. K.M. Bertsch, G. Meric de Bellefon, B. Kuehl, and D.J. Thoma: Acta Mater., 2020, vol. 199, pp. 19–33.

    CAS  Google Scholar 

  36. Y. Zhong, L. Liu, S. Wikman, D. Cui, and Z. Shen: J. Nucl. Mater., 2016, vol. 470, pp. 170–8.

    CAS  Google Scholar 

  37. M.D. Sangid, T.A. Book, D. Naragani, J. Rotella, P. Ravi, A. Finch, P. Kenesei, J.-S. Park, H. Sharma, J. Almer, and X. Xiao: Addit. Manuf., 2018, vol. 22, pp. 479–96.

    CAS  Google Scholar 

  38. Y.S.J. Yoo, T.A. Book, M.D. Sangid, and J. Kacher: Mater. Sci. Eng. A, 2018, vol. 724, pp. 444–51.

    CAS  Google Scholar 

  39. A. Hadadzadeh, B. Shalchi Amirkhiz, A. Odeshi, J. Li, and M. Mohammadi: Addit. Manuf., 2019, vol. 28, pp. 1–13.

  40. T. Pinomaa, M. Lindroos, M. Walbrühl, N. Provatas, and A. Laukkanen: Acta Mater., 2020, vol. 184, pp. 1–16.

    CAS  Google Scholar 

  41. G. Meric de Bellefon, K.M. Bertsch, M.R. Chancey, Y.Q. Wang, and D.J. Thoma: J. Nucl. Mater., 2019, vol. 523, pp. 291–8.

    CAS  Google Scholar 

  42. L.E. Murr: Addit. Manuf., 2015, vol. 5, pp. 40–53.

    CAS  Google Scholar 

  43. Y. Han, R.J. Griffiths, H.Z. Yu, and Y. Zhu: J. Mater. Res., 2020, vol. 35, pp. 1936–48.

    CAS  Google Scholar 

  44. S.S. Razvi, S. Feng, A. Narayanan, Y.T.T. Lee, and P. Witherell: in Proceedings of the ASME Design Engineering Technical Conference, vol. 1, 2019.

  45. C. Herriott and A.D. Spear: Comput. Mater. Sci., 2020, vol. 175, p. 109599.

    CAS  Google Scholar 

  46. H. Chandler, ed.: Heat Treater’s Guide: Practices and Procedures for Nonferrous Alloys, ASM International, Materials Park, OH, 1996.

    Google Scholar 

  47. E.A. Lass, M.R. Stoudt, M.E. Williams, M.B. Katz, L.E. Levine, T.Q. Phan, T.H. Gnaeupel-Herold, and D.S. Ng: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2017, vol. 48, pp. 5547–58.

  48. S. Qin, T.C. Novak, M.K. Vailhe, Z.-K. Liu, and A.M. Beese: Mater. Sci. Eng. A, 2021, vol. 806, p. 140808.

    CAS  Google Scholar 

  49. G. Marchese, S. Parizia, M. Rashidi, A. Saboori, D. Manfredi, D. Ugues, M. Lombardi, E. Hryha, and S. Biamino: Mater. Sci. Eng. A, 2020, vol. 769, p. 138500.

    CAS  Google Scholar 

  50. M. Godec, S. Zaefferer, B. Podgornik, M. Šinko, and E. Tchernychova: Mater. Charact., 2020, vol. 160, p. 110074.

    CAS  Google Scholar 

  51. C. Li, R. White, X.Y. Fang, M. Weaver, and Y.B. Guo: Mater. Sci. Eng. A, 2017, vol. 705, pp. 20–31.

    CAS  Google Scholar 

  52. S.K. Nayak, S.K. Mishra, A.N. Jinoop, C.P. Paul, and K.S. Bindra: J. Mater. Eng. Perform., 2020, vol. 29, pp. 7636–47.

    Google Scholar 

  53. BYU – OpenXY: https://github.com/BYU-MicrostructureOfMaterials/OpenXY.

  54. T.B. Britton and A.J. Wilkinson: Ultramicroscopy, 2012, vol. 114, pp. 82–95.

    CAS  Google Scholar 

  55. A.C. Leff, C.R. Weinberger, and M.L. Taheri: Ultramicroscopy, 2015, vol. 153, pp. 9–21.

    CAS  Google Scholar 

  56. A. Shivanandan, A. Radenovic, and I.F. Sbalzarini: BMC Bioinformatics, 2013, vol. 14, p. 349.

    Google Scholar 

  57. N.H. Paulson, M.W. Priddy, D.L. McDowell, and S.R. Kalidindi: Acta Mater., 2017, vol. 129, pp. 428–38.

    CAS  Google Scholar 

  58. C. Xu, S. Gao, and M. Li: Comput. Mater. Sci., 2017, vol. 130, pp. 39–49.

    Google Scholar 

  59. A. Gupta, A. Cecen, S. Goyal, A.K. Singh, and S.R. Kalidindi: Acta Mater., 2015, vol. 91, pp. 239–54.

    CAS  Google Scholar 

  60. J. Ling, M. Hutchinson, E. Antono, B. DeCost, E.A. Holm, and B. Meredig: Mater. Discov., 2017, vol. 10, pp. 19–28.

    Google Scholar 

  61. S. Keshavarz and S. Ghosh: Int. J. Solids Struct., 2015, vol. 55, pp. 17–31.

    CAS  Google Scholar 

  62. G. Fleury, F. Schubert, and H. Nickel: Comput. Mater. Sci., 1996, vol. 7, pp. 187–93.

    CAS  Google Scholar 

  63. H. Mughrabi: Acta Metall., 1983, vol. 31, pp. 1367–79.

    CAS  Google Scholar 

  64. C. Herriott, X. Li, N. Kouraytem, V. Tari, W. Tan, B. Anglin, A.D. Rollett, and A.D. Spear: Model. Simul. Mater. Sci. Eng., 2019, vol. 27, p. 025009.

    CAS  Google Scholar 

  65. A. Mostafaei, P. Rodriguez De Vecchis, I. Nettleship, and M. Chmielus: Mater. Des., 2019, vol. 162, pp. 375–83.

    CAS  Google Scholar 

  66. A. Lal, R.G. Iacocca, and R.M. German: J. Mater. Sci., 2000, vol. 35, pp. 4507–18.

    CAS  Google Scholar 

  67. R.M. German: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 1997, vol. 28, pp. 1553–67.

  68. H.L. Wei, G.L. Knapp, T. Mukherjee, and T. Debroy: Addit. Manuf., 2018, vol. 25, pp. 448–59.

    Google Scholar 

  69. A. Panin, M. Kazachenok, O. Perevalova, S. Martynov, A. Panina, and E. Sklyarova: Metals (Basel), 2019, vol. 9(6), p. 699. https://doi.org/10.3390/met9060699.

  70. J.N. Zalameda, E.R. Burke, R.A. Hafley, K.M. Taminger, C.S. Domack, A. Brewer, and R.E. Martin: Thermosense Therm. Infrared Appl. XXXV, 2013, vol. 8705, p. 87050M.

    Google Scholar 

  71. L.E. Criales and T. Özel: Prog. Addit. Manuf., 2017, vol. 2, pp. 169–77.

    Google Scholar 

  72. N. Li, S. Huang, G. Zhang, R. Qin, W. Liu, H. Xiong, G. Shi, and J. Blackburn: J. Mater. Sci. Technol., 2019, vol. 35, pp. 242–69.

    Google Scholar 

  73. M. Chmielus, E. Stevens, A. Mostafaei, P. Rodriguez De Vecchis, R. Rodriguez De Vecchis, A. Acierno, K. Kimes, and J. Toman: in The 6th International Conference on Ferromagnetic Shape Memory Alloys, 2019, pp. 46–47.

  74. F. Pyczak, B. Devrient, and H. Mughrabi: Superalloys, 2004, pp. 827–36.

  75. K.M. Taminger and R.A. Hafley: Electron Beam Freeform Fabrication for Cost Effective Near-Net Shape Manufacturing, in NATO/RTOAVT-139 Specialists’ Meeting on Cost Effective Manufacture via Net Shape Processing, Amsterdam, The Netherlands, NATO.

  76. R.K. Bird and J. Hibberd: Tensile properties and microstructure of Inconel 718 fabricated with electron beam freeform fabrication, in NASA Technical Memorandum TM-2009-215929, 2009.

  77. M. Huo, L. Liu, W. Yang, Y. Li, S. Hu, H. Su, J. Zhang, and H. Fu: J. Mater. Res., 2019, vol. 34, pp. 251–60.

    CAS  Google Scholar 

  78. R. Willnecker, D.M. Herlach, and B. Feuerbacher: Phys. Rev. Lett., 1989, vol. 62, pp. 2707–10.

    CAS  Google Scholar 

  79. N. Raghavan, R. Dehoff, S. Pannala, S. Simunovic, M. Kirka, J. Turner, N. Carlson, and S.S. Babu: Acta Mater., 2016, vol. 112, pp. 303–14.

    CAS  Google Scholar 

  80. V. Thampy, A.Y. Fong, N.P. Calta, J. Wang, A.A. Martin, P.J. Depond, A.M. Kiss, G. Guss, Q. Xing, R.T. Ott, A. van Buuren, M.F. Toney, J.N. Weker, M.J. Kramer, M.J. Matthews, C.J. Tassone, and K.H. Stone: Sci. Rep., 2020, vol. 10, p. 1981.

    CAS  Google Scholar 

  81. K.N. Amato, S.M. Gaytan, L.E. Murr, E. Martinez, P.W. Shindo, J. Hernandez, S. Collins, and F. Medina: Acta Mater., 2012, vol. 60, pp. 2229–39.

    CAS  Google Scholar 

  82. E. Chlebus, K. Gruber, B. Kuznicka, J. Kurzac, and T. Kurzynowski: Mater. Sci. Eng. A, 2015, vol. 639, pp. 647–55.

    CAS  Google Scholar 

  83. P.J. Withers and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 2001, vol. 17, pp. 366–75.

    CAS  Google Scholar 

  84. A.T. Polonsky, N. Raghavan, M.P. Echlin, W.C. Lenthe, M.M. Kirka, R.R. Dehoff, and T.M. Pollock: Microsc. Microanal, 2019, vol. 25, p. 2019.

    Google Scholar 

  85. Q. Wu, T. Mukherjee, C. Liu, J. Lu, and T. Debroy: Addit. Manuf., 2019, vol. 29, 100808. https://doi.org/10.1016/j.addma.2019.100808.

  86. R. Jiang, A. Mostafaei, Z. Wu, A. Choi, P.-W. Guan, M. Chmielus, and A.D. Rollett: Addit. Manuf., 2020, vol. 35, p. 101282.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the team at Hoeganaes Corp. in Cinnaminson, N.J., particularly Alex Zwiren and George Bernhard, for fabrication of the BJ3DP sample, Jacob Hochhalter at NASA Langley Research Center in Hampton, VA, for fabrication of the EBF3 sample, and Matthew Clemente and Elias Jelis at Army ARDEC at Picatinny Arsenal, N.J., for DMLS manufacturing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitra L. Taheri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 30, 2020; accepted March 26, 2021.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 244 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Small, K.A., Taheri, M.L. Role of Processing in Microstructural Evolution in Inconel 625: A Comparison of Three Additive Manufacturing Techniques. Metall Mater Trans A 52, 2811–2820 (2021). https://doi.org/10.1007/s11661-021-06273-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06273-x

Navigation