Skip to main content
Log in

Diffusional Limits of Superalloy Desulfurization by Hydrogen Annealing

  • Brief Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Hydrogen annealing was used to desulfurize Ni-superalloy PWA 1480 at multiple temperatures (T), times (t), and sample thickness (L). Initial sulfur (6 ppmw) was reduced to below 0.1 ppmw at the extremes. Residual sulfur, predicted by the thin slab diffusion solution, was in broad agreement with the published sulfur diffusivity (DS,Ni) but did not contract onto one normalized Arrhenius curve. Divergences occurred for low temperature (1000 °C) or extreme values of the diffusion parameter, DSt/L2, suggesting limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. M. Bai, H. Jiang, Y. Chen, Y. Chen, C. Grovenor, X. Zhao, and P. Xiao: Materials and Design 2016, vol. 97, pp. 364–371. https://doi.org/10.1016/j.matdes.2016.02.109

    Article  CAS  Google Scholar 

  2. C. Tabata, K. Kawagishi, J. Uzuhashi, T. Ohkubo, K. Hono, T. Yokokawa, H. Harada, and S. Suzuki: Scripta Mat., 2021, vol. 194, 113616. https://doi.org/10.1016/j.scriptamat.2020.11.003.

    Article  CAS  Google Scholar 

  3. J.L. Smialek and B.K. Tubbs: Metall. Mat. Trans.,1995, vol. 26A, pp. 427-435; (also in Corrosion and Particle Erosion at High Temperatures, V. Srinivasan and K. Vedula, eds., TMS-AIME, 1989, pp. 459-487. https://doi.org/10.1007/BF02664679.

    Article  CAS  Google Scholar 

  4. W.E. Frazier, T.-H.T. Mickle and B. A. Pregger: “Hydrogen Desulfurization of Nickel: Thermodynamics and Kinetics,” Report No. NAWCADWAR-93074-60, AD-A282 581, 1993. https://apps.dtic.mil/sti/citations/ADA282581

  5. M.A. Smith, W.E. Frazier, and B.A. Pregger: Mat. Sci. Engineer. A, 1995, vol. 203, pp. 388-398. https://doi.org/10.1016/0921-5093(95)09819-4

    Article  Google Scholar 

  6. J.L. Smialek: J. Eng. Gas Turbines Power. 1998, 120(2): 370–74. https://doi.org/10.1115/1.2818132 (Also, IGTI Birmingham, ASME 96-GT-519. https://doi.org/10.1115/96-GT-519).

  7. J.L. Smialek: “Effect of Hydrogen Annealing and Sulfur Content on the Oxidation Resistance of PWA 1480,” in NASA CP 10193, Paper No. 1, May, 1997, pp. 1–13. https://ntrs.nasa.gov/api/citations/19970024956/downloads/19970024956.pdf.

  8. J.L. Smialek: Crystals, 2021, 11, 60-71. https://doi.org/10.3390/cryst11010060.

    Article  CAS  Google Scholar 

  9. S. Utada, Y. Joh, M. Osawa, T. Yokokawa, T. Sugiyama, T. Kobayashi, K. Kawagishi, S. Suzuki and H. Harada: Metall. Mater. Trans A, 2018, vol. 49A, pp. 4029–4041. https://doi.org/10.1007/s11661-018-4710-4

    Article  CAS  Google Scholar 

  10. E. Fedorova, D. Monceau, D. Oquab, and A. Popov: Mater. High Temp. 2012, vol. 29, pp. 243-248. https://doi.org/10.3184/096034012X13343145866993

    Article  CAS  Google Scholar 

  11. G.H. Geiger and D.R. Poirier: “Transport Phenomena in Metallurgy”, Addison-Wesley, New York, NY, 1973, pp. 486-487.

    Google Scholar 

  12. P. Marcus and J. Oudar: in Fundamental Aspects of Corrosion Protection by Surface Modification, E. McCafferty, C.R. Clayton, and J. Oudar, eds., Electrochemical Society, Pennington, NJ, 1984, pp. 173–93.

  13. T. Miyahara, K. Stolt, D.A. Reed, and H.K. Birnbaum: Scripta Met., 1985, vol. 19, pp. 117-121. https://doi.org/10.1016/0036-9748(85)90276-5

    Article  CAS  Google Scholar 

  14. D.T. Jayne and J.L. Smialek: in Microscopy of Oxidation II, S.B. Newcomb and M.J. Bennett, eds., Institute of Metals, London, 1993, pp. 183–96 (also NASA TM 106289, 1993). https://ntrs.nasa.gov/citations/19940011519

  15. C.A. Gonzalez, S.J. Choquette: NIST Standard, SRM 861 Certificate of Analysis, Oct. 2016. https://www-s.nist.gov/m-srmors/certificates/861.pdf

  16. K. Putera, (Evans Analytical Group, Liverpool, NY), private communication, Dec. 24, 2020.

  17. L. Graham, (PCC, Minerva, OH), private communication, 1998.

  18. K. Murphy, (Howmet/Alcoa, Whitehall, M): “Nickel Base Superalloy,” US Patent Application Publication, No. 2004/0229072 A1, Nov. 18, 2004.

  19. J. Irvine, et al., (Howmet Corp.): “Ultra Low Sulfur Superalloy and Method of Making,” US Patent 5,922,148. July 13, 1999.

  20. K. Harris, (Cannon-Muskegon Corp., Muskegon, MI); private communication, 2017.

  21. S. Gray (U. Cranfield, Cranfield, UK), private communication, 2020.

  22. P. Audigié, A. Rouaix-Vande Put, A. Malié, and D. Monceau: Corrosion Sci. 2018, vol. 144, pp. 127–35. https://doi.org/10.1016/j.corsci.2018.08.050

  23. Y. Kishimoto, S. Utada, T. Iguchi, Y. Mori, M. Osawa, T. Yokokawa, T. Kobayashi, K. Kawagishi, S. Suzuki, and H. Harada, Metall. Mater. Trans. B, 2020, vol. 51, pp. 293–305. https://doi.org/10.1007/s11663-019-01716-8

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James L. Smialek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted January 28, 2021, accepted March 27, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smialek, J.L. Diffusional Limits of Superalloy Desulfurization by Hydrogen Annealing. Metall Mater Trans A 52, 2698–2701 (2021). https://doi.org/10.1007/s11661-021-06272-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06272-y

Navigation