Skip to main content
Log in

Microstructure and Fracture Toughness of an Aluminum-Steel Impact Weld and Effect of Thermal Exposure

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Welding of aluminum alloys to steel is increasingly important in manufacturing; however, the use of fusion welding is difficult because of disparate melting points and the possibility of intermetallic compound (IMC) formation. Here, an impact welding technique, vaporizing foil actuator welding, was utilized to produce solid-state joints between AA1100-O and 1018 mild steel. The relationship between weld processing conditions, microstructure, and mechanical properties was investigated. For this purpose, the welds were annealed between 300 °C and 600 °C and a combination of optical and scanning electron microscopy, along with image analysis was performed to characterize the weld microstructure and monitor IMC growth. Wedge testing was applied to understand the effect of annealing on the weld fracture toughness. A numerical model incorporating the Fick’s laws of diffusion, grain boundary diffusion, and grain growth kinetics was also developed to simulate the IMC growth. The heterogeneity in the original microstructure caused persistent differences in IMC growth, as initial IMC seemed to increase nucleation and growth. Simulation results indicated short circuit diffusion to be the major contributor to IMC growth since it is consistently faster then experimental IMC growths compared with the computational results that used lattice diffusion only. Wedge testing reveals increased weld toughness for modest anneals of 300 °C, possibly due to homogeneity at the weld interface while avoiding IMC growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. [1] L. Xu, L. Wang, Y.C. Chen, J.D. Robson, and P.B. Prangnell: Metall. Mater. Trans. A, 2016, vol. 47, pp. 334-46.

    Article  Google Scholar 

  2. [2] A. Kapil and A. Sharma: J. Clean. Prod., 2015, vol. 100, pp. 35-58.

    Article  Google Scholar 

  3. [3] M. Movahedi, A.H. Kokabi, S.M.S. Reihani, H. Najafi, S.A. Farzadfar, W.J. Cheng, and C.J. Wang: Mater. Charact., 2014, vol. 90, pp. 121-26.

    Article  CAS  Google Scholar 

  4. S.R. Hansen, A. Vivek, and G.S. Daehn: J. Manuf. Sci. E, 2015, vol. 137, 051013.

    Article  Google Scholar 

  5. [5] P. Corigliano, V. Crupi, E. Guglielmino, and A.M. Sili: Mar. Struct., 2018, vol. 57, pp. 207-18.

    Article  Google Scholar 

  6. J. Conklin, R. Beals, and Z. Brown: SAE Tech. Pap. (No. 2015-01-0408), (2015).

  7. K. Smith and Y. Zhan: SAE Tech. Pap. (No. 2015-01-0410), (2015).

  8. [8] H. Springer, A. Kostka, E.J. Payton, D. Raabe, A. Kaysser-Pyzalla, and G. Eggeler: Acta. Mater., 2011, vol. 59, pp.1586-1600.

    Article  CAS  Google Scholar 

  9. [9] R. Qiu, C. Iwamoto, and S. Satonaka: Mater. Design, 2009, vol. 30, pp. 3686-89.

    Article  CAS  Google Scholar 

  10. [10] Y. Abe, T. Kato, and K. Mori: J. Mater. Process. Tech., 2009, vol. 209, pp. 3914-22.

    Article  CAS  Google Scholar 

  11. [11] R. Qiu, C. Iwamoto, and S. Satonaka: J. Mater. Process. Tech., 2009, vol. 209, pp. 4186-93.

    Article  CAS  Google Scholar 

  12. [12] R. Qiu, C. Iwamoto, and S. Satonaka: Mater. Charact., 2009, vol. 60, pp. 156-59.

    Article  CAS  Google Scholar 

  13. W. Cai, G. Daehn, A. Vivek, J. Li, H. Khan, R.S. Mishra, and M. Komarasamy: J. Manuf. Sci. E.-T ASME, 2019, vol. 141.

  14. M. Pouranvari and S.P.H. Marashi: Sci. Technol. Weld. Joi. 2013, 18, 361-403.

    Article  CAS  Google Scholar 

  15. [15] B.P. Thurston, A. Vivek, B.S. Nirudhoddi, and G.S. Daehn: MRS Bull., 2019, vol. 44, pp. 637-42.

    Article  Google Scholar 

  16. [16] R. Hatano, T. Ogura, T. Matsuda, T. Sano, and A. Hirose: Mater. Sci. Eng. A, 2018, vol. 735, pp. 361-66.

    Article  CAS  Google Scholar 

  17. [17] M. Honarpisheh, M. Asemabadi, and M. Sedighi: Mater. Design, 2012, vol. 37, pp.122-27.

    Article  CAS  Google Scholar 

  18. [18] H. Springer, A. Kostka, J.F. dos Santos, and D. Raabe: Mater. Sci. Eng. A, 2011, vol. 528, pp. 4630-42.

    Article  Google Scholar 

  19. [19] L. Xu, J.D. Robson, L. Wang, and P.B. Prangnell: Metall. Mater. Trans. A, 2018, vol. 49, pp. 515-26.

    Article  Google Scholar 

  20. A.C.K. So and Y.C. Chan: In 1996 Proceedings 46th Electronic Components and Technology Conference, 1996, pp. 1164–71.

  21. [21] M. Kajihara: Mater. Trans., 2006, vol. 47, pp. 1480-84.

    Article  CAS  Google Scholar 

  22. [22] H. Springer, A. Szczepaniak, and D. Raabe: Acta. Mater., 2015, vol. 96, pp. 203-11.

    Article  CAS  Google Scholar 

  23. [23] M. Yilmaz, M. Cöl, and M. Acet: Mater. Charact., 2002, vol. 49, pp. 421-29.

    Article  CAS  Google Scholar 

  24. A. Kobayashi, M. Machida, S. Hukaya, and M. Suzuki: JSME Int. J. A 2003, 46, 452-59.

    Article  CAS  Google Scholar 

  25. [25] K. Mechsner and H. Klock: Aluminium, 1983, vol. 59, pp. 850-54.

    Google Scholar 

  26. [26] D.R.G Achar, J. Ruge, and S. Sundaresan: Aluminium, 1980, vol. 56, pp. 220-23.

    CAS  Google Scholar 

  27. [27] L. Agudo, D. Eyidi, C.H. Schmaranzer, E. Arenholz, N. Jank, J. Bruckner, and A.R. Pyzalla: J. Mater. Sci., 2007, vol. 42, pp. 4205-14.

    Article  CAS  Google Scholar 

  28. [28] G. Zhang, M. Chen, Y. Shi, J. Huang, and F. Yang: RSC Adv., 2017, vol. 7, pp. 37797-805.

    Article  CAS  Google Scholar 

  29. [29] H.C. Akuezue and D.P. Whittle: Met. Sci. J., 1983, vol. 17, pp. 27-31.

    Article  CAS  Google Scholar 

  30. [30] K. Miyamoto, S. Nakagawa, C. Sugi, H. Sakurai, and A. Hirose: SAE Int. J. Mater. Manuf., 2009, vol. 2, pp. 58-67.

    Article  Google Scholar 

  31. N. Chen, M. Wang, H.-P. Wang, Z. Wan, and B.E. Carlson: J. Manuf. Process., 2018, vol. 34, pp. 424-34.

    Article  Google Scholar 

  32. [32] T. Tanaka, T. Morishige, and T. Hirata: Scr. Mater., 2009, vol. 61, pp. 756-59.

    Article  CAS  Google Scholar 

  33. [33] M. Movahedi, A.H. Kokabi, S.S. Reihani, W.J. Cheng, and C.J. Wang: Mater. Design, 2013, vol. 44, pp. 487-92.

    Article  CAS  Google Scholar 

  34. W.H. Jiang and R. Kovacevic: Mech. Eng. B 2004, 218, 1323-31.

    Article  CAS  Google Scholar 

  35. [35] S.Yang, J. Zhang, J. Lian, and Y. Lei: Mater. Design, 2013, vol. 49, pp. 602-12.

    Article  CAS  Google Scholar 

  36. [36] N.R. Philips, M.Y. He, A.G. Eva: Acta. Mater., 2008, vol. 56, pp. 4593-600.

    Article  CAS  Google Scholar 

  37. [37] E. Bruhwiler, F.H. Wittmann. Eng. Fract. Mech., 1990, vol. 35, pp. 117-25.

    Article  Google Scholar 

  38. Z. Chen, Q. Zhang, and J.C. Zhao: J. Open Res. Softw., 2019, vol. 7.

  39. G. Neumann and C. Tuijn: Self-diffusion and impurity diffusion in pure metals: handbook of experimental data, 2011, vol. 14.

  40. G.E. Murch and C.M. Bruff: Springer, Berlin, 1990, pp. 340–52.

  41. [41] B. Liu, A. Vivek, M. Presley, and G.S. Daehn: Metall. Mater. Trans. A., 2018, vol. 49, pp. 899-907

    Article  Google Scholar 

  42. C. Herzig and Y. Mishin: Springer, Berlin, 2005, pp. 337–66.

  43. http://shodhganga.inflibnet.ac.in/jspui/bitstream/10603/77141/12/12_chapter pct204.pdf, website accessed 11/2018.

  44. [44] C. Herzig and S. Divinski: In Diffusion processes in advanced technological materials, Springer, Berlin, Heidelberg, 2005, pp. 173-238.

    Google Scholar 

  45. [45] H. Mehrer: In Diffusion Foundations, Trans Tech Publications, 2014, vol. 2, pp. 1-72.

    Google Scholar 

  46. [46] A. Vivek, S.R. Hansen, B.C. Liu, and G.S. Daehn: J. Mater. Process. Tech., 2013, vol. 213, pp. 2304-11.

    Article  CAS  Google Scholar 

  47. [47] A. Vivek, B.C. Liu, S.R. Hansen, and G.S. Daehn: J. Mater. Process. Tech., 2014, vol. 214, pp. 1583-89.

    Article  CAS  Google Scholar 

  48. B.C. Liu: Doctoral dissertation, The Ohio State University, 2016.

  49. [49] A. Nassiri, G. Chini, A. Vivek, G. Daehn, and B. Kinsey: Mater. Design, 2015, vol. 88, pp. 345-58.

    Article  CAS  Google Scholar 

  50. [50] J.T. Benzing, M. He, A. Vivek, G.A. Taber, M.J. Mills, and G.S. Daehn: J. Mater. Eng. Perform., 2017, vol. 26, pp. 1229-35.

    Article  CAS  Google Scholar 

  51. T. Lee, S. Zhang, A. Vivek, B. Kinsey, and G. Daehn: J. Manuf. Sci. E.-T ASME, 2018, vol. 140.

  52. [52] A. Vivek, S.R. Hansen, and G.S. Daehn: Rev. Sci. Instrum., 2014, vol. 85, 075101.

    Article  CAS  Google Scholar 

  53. A. Vivek, B. Liu, D. Sakkinen, M. Harris, and G. Daehn: SAE Tech. Pap. (No. 2015-01-0701), 2015.

  54. [54] B. Liu, A. Vivek, and G.S. Daehn: J. Manuf. Process., 2017, vol. 30, pp. 75-82.

    Article  Google Scholar 

  55. [55] A. Vivek, S. Hansen, J. Benzing, M. He, and G. Daehn: Metall. Mater. Trans. A, 2015, vol. 46, pp. 4548-58.

    Article  Google Scholar 

  56. [56] A. Nassiri, T. Abke, and G. Daehn: Scr. Mater., 2019, vol. 168, pp. 61-66.

    Article  CAS  Google Scholar 

  57. [57] V. Gupta, T. Lee, A. Vivek, K.S. Choi, Y. Mao, X. Sun, and G. Daehn: J. Mater. Process. Tech., 2019, vol. 264, pp. 107-18.

    Article  Google Scholar 

  58. [58] A. Nassiri, A. Vivek, T. Abke, B. Liu, T. Lee, and G. Daehn: Appl. Phys. Lett., 2017, vol. 110, 231601.

    Article  Google Scholar 

  59. [59] R.N. Raoelison, T. Sapanathan, E. Padayodi, N. Buiron, and M. Rachik: J. Mech. Phys. Solids, 2016, vol. 96, pp. 147-61.

    Article  Google Scholar 

  60. A. Nassiri, S. Zhang, T. Abke, A. Vivek, B. Kinsey, and G. Daehn: In Proceedings of the 3rd Pan American Materials Congress, 2017, 83–93. Springer, Cham.

  61. [61] K. Shibata, S. Morozumi, and S. Koda: J. Jpn. Inst. Met., 1966, vol. 30, pp. 382.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial support from the National science foundation (NSF) under grant opportunities for Academic Liaison with Industry (GOALI), Award No. 1538736 and NSF Major Research Instrument Grant 1531785. The authors would also like to thank Center for Electron Microscopy and Analysis (CEMAS) at The Ohio State University for providing access to research facilities.

Disclosure

No potential conflict of interest was reported by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noah Kohlhorst.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 5, 2020, accepted March 25, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kohlhorst, N., Kapil, A., Chen, Z. et al. Microstructure and Fracture Toughness of an Aluminum-Steel Impact Weld and Effect of Thermal Exposure. Metall Mater Trans A 52, 2795–2810 (2021). https://doi.org/10.1007/s11661-021-06269-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06269-7

Navigation