Skip to main content
Log in

Microstructural and Rotating-Bending Fatigue Behavior Relationship in Nanostructured Carbo-Austempered Cast Steels

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Carbo-austempering processes have been established as a viable alternative to conventional carburized—quenched and tempered (Q&T) steels for components subjected to wear and contact fatigue conditions. However, little information is available about the rotating-bending fatigue performance of carbo-austempered nanobainitic steels. In this article, the rotating-bending fatigue behavior of a high silicon cast steel subjected to different carbo-austempering processes has been evaluated. The implemented heat treatments were designed to lead to nanobainitic microstructures in the case and to obtain different microstructures in the core, including multiphasic microstructures achieved by intercritical austenitization. The results were compared with the ones given by a conventional carburized-Q&T specimen. The microstructural features involved in crack propagation during the cyclic fatigue were evaluated by means of electron backscatter diffraction (EBSD), by scanning the premortem and postmortem samples. Results show that nanobainitic carbo-austempered cast steels exhibit better fatigue performance than traditional carburized-Q&T steels, which is explained in terms of the differences between both microstructures, the role of both ferrite and austenite crystals in crack propagation, the importance of prior austenite boundaries and block boundaries as crack deflectors, and how all these parameters finally have an effect on the fatigue behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

  2. MATLAB is a trademark of MathWorks, Inc.

References

  1. H. Lin, A. Fett, and R. Binoniemi: SAE World Congr., Detroit, MI, Mar. 2003, pp. 3–6. https://doi.org/10.4271/2003-01-1307.

  2. K. Hayrynen, K. Brandenberg, and J. Keough: Soc. Auto. Eng., 2002, pp. 1–8.

  3. M. Steinbacher and H. Zoch: HTM–J. Heat Treat. Mater., 2017, vol. 72, pp. 243–53.

    Article  Google Scholar 

  4. J. Damon, F. Mühl, S. Dietrich, and V. Schulze: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 104–17.

    Article  Google Scholar 

  5. A. Clark: Thesis in Engineering Materials, University of Windsor, Windsor, 2013, pp. 1–103.

  6. Y. Wang, F. Zhang, Z. Yang, B. Lv, and C. Zheng: Materials Basel, 2016, vol. 9 (12), pp. 1–18.

    Article  Google Scholar 

  7. Y. Wang, Z. Yang, F. Zhang, and D. Wu: Mater Sci. Eng. A, 2016, vol. 670, pp. 166–77.

    Article  CAS  Google Scholar 

  8. Z. Yang, F. Zhang, Y. Ji, Y. Wang, B. Lv, and M. Wang: Mater. Sci. Eng. A, 2016, vol. 673, pp. 524–39.

    Article  CAS  Google Scholar 

  9. F. Zhang and Z. Yang: Engineering, 2019, vol. 5 (2), pp. 319–28.

    Article  CAS  Google Scholar 

  10. F. Zhang, T. Wang, P. Zhang, B. Lv, M. Zhang, and Z. Zheng: Scripta Mater., 2008, vol. 59 (3), pp. 294–96.

    Article  CAS  Google Scholar 

  11. P. Zhang, F. Zhang, Z. Yan, T. Wang, and L. Qian: Wear, 2011, vol. 271, pp. 697–704.

    Article  CAS  Google Scholar 

  12. R. Rementeria, L. Morales-Rivas, M. Kunz, C. Garcia-Mateo, E. Kerscher, T. Sourmail, and F. Caballero: Mater. Sci. Eng. A, 2015, vol. 630, pp. 71–77.

    Article  CAS  Google Scholar 

  13. M. Peet, P. Hill, M. Rawson, S. Wood, and H. Bhadeshia: Mater. Sci. Technol., 2011, vol. 27 (1), pp. 119–23.

    Article  CAS  Google Scholar 

  14. I. Mueller, R. Rementeria, F. Caballero, M. Kuntz, T. Sourmail, and E. Kerscher: Materials, 2016, vol. 9, pp. 1–19.

    Article  Google Scholar 

  15. D. De Castro, R. Rementeria, J. Vivas, T. Sourmail, J. Poplawsky, E. Urones-Garrote, J. Jimenez, C. Capdevila, and F. Caballero: Mater. Character., 2020, vol. 160, pp. 1–30.

    Google Scholar 

  16. P. Jacques, F. Delannay, and J. Ladrière: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2759–68.

    Article  CAS  Google Scholar 

  17. B. Shendy, M. Yoozbashi, B. Avishan, and S. Yazdani: Acta Metall. Sinica Engl. Lett., 2014, vol. 27 (2), pp. 233–38.

    Article  CAS  Google Scholar 

  18. J. Yang, T. Wang, B. Zhang, and F. Zhang: Scripta Mater., 2012, vol. 66, pp. 363–66.

    Article  CAS  Google Scholar 

  19. A. Leiro: Luleå University of Technology, Luleå, Sweden, 2014, pp. 1–138.

  20. O. Ríos-Diez, R. Aristizábal-Sierra, C. Serna-Giraldo, J. Jiménez, and C. García-Mateo: Metals, 2020, vol. 10, pp. 1–18.

    Article  Google Scholar 

  21. ASTM Standard E350-18, ASTM International, ASTM, Warrendale, PA, 2018, pp. 1–64.

  22. ASTM Standard E8/E8M-16a, ASTM International, ASTM, Warrendale, PA, 2016, pp. 1–30.

  23. Testing of Metallic Materials, German National Standard DIN 50113, 2018, pp. 1–15.

  24. G. Parrish: ASM Int., 1999, pp. 1–247. https://doi.org/10.1361/cmap1999p001.

  25. ASTM Standard E3-11, ASTM International, ASTM, Warrendale, PA, 2011, vol. i, pp. 1–12.

  26. C. Garcia-Mateo, J. Jimenez, B. Lopez-Ezquerra, R. Rementeria, L. Morales-Rivas, M. Kuntz, and F. Caballero: Mater. Charact., 2016, vol. 122, pp. 83–89.

    Article  CAS  Google Scholar 

  27. C. García de Andres, F. Caballero, C. Capdevila, and D. San Martín: Mater. Character., 2003, vol. 49, pp. 121–27.

    Article  Google Scholar 

  28. ASTM Standard E112-13, ASTM International, Warrendale, PA, 2013, pp. 1–28.

  29. D. Dyson and B. Holmes: J. Iron Steel Inst., 1970, vol. 208, pp. 469–74.

    CAS  Google Scholar 

  30. A. Navarro-Lopez, J. Sietsma, and M.-J. Santofimia: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 1028–39.

    Article  Google Scholar 

  31. ASTM Standard E562-19, ASTM International, Warrendale, PA, 2016, pp. 1–7.

  32. T. Nyyssönen, P. Peura, and V. Kuokkala: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 6426–41.

    Article  Google Scholar 

  33. C. Garcia-Mateo and F. Caballero: Handbook of Mechanical Nanostructuring, 1st ed., 2015, pp. 35–65.

  34. C. Garcia‐Mateo and F. Caballero: Nanotechnology for Energy Sustainability, B. Raj, M. Van de Voorde, and Y. Mahajan, 2017, pp. 707–24. https://doi.org/10.1002/9783527696109.

  35. H. Bhadeshia: Bainite in Steels, 3rd ed., Maney Publishing, Leeds, United Kingdom, 2015, pp. 1–616.

    Google Scholar 

  36. S. Arijit: Ph.D. Thesis, University of Cambridge, Cambridge, United Kingdom, 2011, pp. 1–207. www.phase-trans.msm.cam.ac.uk/2011/Arijit_thesis.pdf.

  37. C. García-Mateo, J. Jiménez, H. Yen, M. Miller, L. Morales-Rivas, M. Kuntz, S. Ringer, J. Yang, and F. Caballero: Acta Mater., 2015, vol. 91, pp. 162–73.

    Article  Google Scholar 

  38. M. Sarizam and Y. Komiz: J. Mech. Eng. Sci., 2014, vol. 7, pp. 1103–14.

    Article  CAS  Google Scholar 

  39. T. Furuhara, H. Kawata, S. Morito, and T. Maki: Mater. Sci. Eng. A, 2006, vol. 431, pp. 228–36.

    Article  Google Scholar 

  40. H. Kawata, K. Sakamoto, T. Moritani, S. Morito, T. Furuhara, and T. Maki: Mater. Sci. Eng. A, 2006, vol. 438, pp. 140–44.

    Article  Google Scholar 

  41. L. Morales-Rivas, F. Caballero, and C. García-Mateo: Encyclopedia of Iron, Steel, and Their Alloys, 2015, pp. 3077–87. https://doi.org/10.1081/e-eisa-120051968.

  42. M. Meyers and K. Chawla: Mechanical Behavior of Materials, Cambridge University Press, Cambridge, United Kingdom, 2008, p. 731.

    Book  Google Scholar 

  43. S. Chatterjee and H. Bhadeshia: Mater. Sci. Technol., 2007, vol. 23 (9), pp. 1101–04.

    Article  CAS  Google Scholar 

  44. B. Avishan, S. Yazdani, F. Caballero, T. Wang, and C. García-Mateo: Mater. Sci. Technol., 2015, vol. 31 (12), pp. 1508–20.

    Article  CAS  Google Scholar 

  45. M. Klesnil and P. Lukác: Materials Science Monographs, 2nd ed., 1992, vol. 71, pp. 1–270.

  46. J. Christian: Metall. Trans. A, 1990, vol. 21A, pp. 799–803.

    Article  CAS  Google Scholar 

  47. H. Beladi, Y. Adachi, I. Timokhina, and P. Hodgson: Scripta Mater., 2009, vol. 60, pp. 455–58.

    Article  CAS  Google Scholar 

  48. H. Carpenter and S. Tamura: Proc. R. Soc. Lond. Ser. A, 113(763), 28–43 (1926)

    Article  CAS  Google Scholar 

  49. T. Meng-Yin, W. Wen-Hsiung, and H. Yung-Fu: Mater. Trans., 2008, vol. 49 (3), pp. 559–64.

    Article  Google Scholar 

  50. S. Birosca: Metals (MDPI), July 2017, pp. 1–280. https://doi.org/10.3390/books978-3-03842-457-4.

  51. M. Batista, M. Marinelli, and I. Alvarez‐Armas: Fat. Fract. Eng. Mater. Struct., 2019, vol. 42 (1), pp. 61–68.

    Article  CAS  Google Scholar 

  52. A. Ghosh, S. Kundu, and D. Chakrabarti: Scripta Mater., 2014, vol. 81, pp. 8–11.

    Article  CAS  Google Scholar 

  53. Z. Guo, C. Lee, and J. Morris: Acta Mater., 2004, 52(19), 5511–18.

    Article  CAS  Google Scholar 

  54. A. Chatterjee, A. Ghosh, A. Moitra, A. Bhaduri, R. Mitra, and D. Chakrabarti: Int. J. Plasticity, 2018, vol. 104, pp. 104–33.

    Article  CAS  Google Scholar 

  55. A. Chatterjee, A. Ghosh, A. Moitra, A. Bhaduri, R. Mitra, and D. Chakrabarti: Mater. Sci., 2016, pp. 1–18.

  56. W. Gong, Y. Tomota, Y. Adachi, A. Paradowska, J. Kelleher, and S. Zhang: Acta Mater., 2013, vol. 61, pp. 4142–54.

    Article  CAS  Google Scholar 

  57. O. Rios-Diez: Ph.D. Thesis, Universidad de Antioquia, Medellin, Colombia, 2020, pp. 1–139.

  58. O. Ríos-Diez, R. Aristizábal-Sierra, C. Serna-Giraldo, A. Eres-Castellanos, and C. García-Mateo: J. Mater. Res. Technol., 2021, vol. 11, pp. 1343–55. https://doi.org/10.1016/j.jmrt.2021.01.094.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the CODI–Universidad de Antioquia for the financial support for the development of this research under Project No. PRG2017-15869 and the National Center for Metallurgical Research (CENIM) for the support provided for the experimental development of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Aristizábal-Sierra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 22, 2020, accepted March 23, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ríos-Diez, O., Aristizábal-Sierra, R., Serna-Giraldo, C. et al. Microstructural and Rotating-Bending Fatigue Behavior Relationship in Nanostructured Carbo-Austempered Cast Steels. Metall Mater Trans A 52, 2773–2786 (2021). https://doi.org/10.1007/s11661-021-06266-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06266-w

Navigation