Skip to main content
Log in

A Review of Liquid Metal Embrittlement: Cracking Open the Disparate Mechanisms

  • Invited Review Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Liquid metal embrittlement (LME) is the term for a collection of phenomena by which the action of a liquid metal in contact with the surface of a solid metal results in the weakening, loss of ductility, or otherwise mechanical degradation of the solid metal. Despite upwards of 100 years of study on this topic (Johnson, Proc R Soc Lond 23(156–163):168–179, 1874 https://doi.org/10.1098/rspl.1874.0024), the ability to predict the occurrence or severity of embrittlement in any given liquid–solid metal pair has eluded the community, in no small part due to the lack of an agreed upon mechanism or mechanisms that explain the observed phenomenology. This review will describe the various ways in which metals can fail by LME, the experimentally observed dependencies on environmental and metallurgical factors (Section III), and will briefly cover the various mechanisms that have been proposed to explain behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. W.H. Johnson: Proc. R. Soc. Lond., 1874, vol. 23(156–163): 168–79 https://doi.org/10.1098/rspl.1874.0024.

  2. J. H. S. Dickenson: Journal of the Institute of Metals, 1920, vol. 23: 315.

    Google Scholar 

  3. J. H. Miller: Journal of the Institute of Metals, 1927, vol. 24: 183.

    Google Scholar 

  4. G.R: J. Inst. Metals, 1927, vol. 37(1), 215.

  5. V.M. Zalkin: 1961, pp. 514–19.

  6. B.A. Pint, J.L. Moser, and P.F. Tortorelli: Fusion Eng. Design, (2006), vol. 81(8-14 PART B): 901–08.

  7. G. Coen, J. Van den Bosch, A. Almazouzi, and J. Degrieck: J. Nucl. Mater., (2010), vol. 398(1-3): 122–28, https://doi.org/10.1016/j.jnucmat.2009.10.021.

  8. D. R. Lesuer, J. B. Bergin, S. A. McInturff, and B. A. Kuhn: Microstructural Science, 1981, vol. 9: 256.

    Google Scholar 

  9. J. S. Huang and G. F. Gallegos: Metallurgical Transactions A, 1990, vol. 21(July): 1959–1967.

    Article  CAS  Google Scholar 

  10. S.P. Lynch, Stress corrosion cracking: Theory and practice 714–748 (2011)

  11. V. Nandi, R. R. Bhat, I. N. Yatisha, and S. V. Suresh: Journal of Failure Analysis and Prevention, 2012, vol. 12(4): 348–353.

    Article  Google Scholar 

  12. J. G. Ball: Chem. Eng., (1976), p. 275.

  13. E.F. Analysis, S.P. Lynch, B. Hole, and T. Pasang: (1995), vol. 2(4), 257–73.

  14. D. W. Cameron: Materials Characterization, 1994, vol. 33(1): 37–43.

    Article  Google Scholar 

  15. A.H. Cottrell and P.R. Swann: Chem. Eng., (1976), p. 266.

  16. H. S. Rawdon: ASTM Proceedings, 1918, vol. 18: 189–218.

    CAS  Google Scholar 

  17. A. P. Reynolds and G. E. Stoner: Metallurgical Transactions A, 1991, vol. 22(8): 1849–1855.

    Article  Google Scholar 

  18. S. P. Lynch: Scripta Metallurgica, 1979, vol. 13: 1051–1056.

    Article  CAS  Google Scholar 

  19. M. H. Kamdar and A. R. C. Westwood: Acta Metallurgica, 1968, vol. 16(November): 1335–1342.

    Article  CAS  Google Scholar 

  20. C.M. Preece and A.R.C. Westwood: in P.L. Pratt (ed.), Proceedings of the 2nd International Conference on Fracture, Chapman and Hall, London, (1969) p. 439.

  21. W. Rostoker, J. McCaughey, and H. Markus: Embrittlement by Liquid Metals, Reinhold Publishing Corporation, New York, 1960.

    Google Scholar 

  22. S. P. Lynch: Mater. Sci. Eng., 1985, vol. 72(2): 33–37.

    Article  Google Scholar 

  23. J. Luo: Corrosion, 2016, vol. 72(7): 897–910.

    Article  CAS  Google Scholar 

  24. K. Ina and H. Koizumi: Mater. Sci. Eng. A, (2004), vol. 387-389(1-2 SPEC. ISS.), 390–94.

  25. J. E. Norkett and V. M. Miller: Jom, 2020, vol. 72(2): 860–867.

    Article  CAS  Google Scholar 

  26. R. H. Hiltz: in J. E. Draley and J. R. Weeks (eds.), Corrosion by Liquid Metals: Proceedings of the Sessions on Corrosion by Liquid Metals, Springer US, Boston, MA (1970).

  27. A. Heinzel, A. Weisenburger, and G. Müller: J. Nucl. Mater., (2014), vol. 448(1-3).

  28. J. B. Bessone: Corrosion Science, 2006, vol. 48(12): 4243–4256.

    Article  CAS  Google Scholar 

  29. C. F. Old and P. Trevena: Metal Science, 1981, vol. 15: 281.

    Article  CAS  Google Scholar 

  30. A. Thorley, C. Tyzack, Alkali Metal Coolants 97–118 (1966)

  31. F. a. Shunk and W. R. Warke: Scripta Metallurgica, (1974), vol. 8: 519–26.

  32. M. H. Kamdar and A. R. C. Westwood: Philosophical Magazine, (1967), vol. 15(135): 641–45.

  33. F. P. Yanchishin: Fiziko-Khimicheskaya Mekhanika Materialov, 1979, vol. 14(4): 36–42.

    Google Scholar 

  34. H. W. Hayden and S. Floreen: Philosophical Magazine, (1969), vol. 20(163): 135–45.

  35. G.N. Vigilante, E. Troiano, C. Mossey, Liquid Metal Embrittlement of ASTM A723 Gun Steel by Indium and Gallium (Tech. rep, US Army Armament Research, Development and Engineering Center), (1999).

  36. S. Hémery, T. Auger, J. L. Courouau, and F. Balbaud-Célérier: Corrosion Science, 2014, vol. 83: 1–5.

    Article  Google Scholar 

  37. I. H. Dmukhovs’ka: Materials Science, 1994, vol. 29(6): 596–599.

    Article  Google Scholar 

  38. O. Wouters and J. T. M. De Hosson: Mater. Sci. Eng. A, (2003).

  39. I. Proriol Serre and J. B. Vogt: J. Nucl. Mater., (2020).

  40. M. G. Nicholas and C. F. Old: J. Mater. Sci., (1979), vol. 14(1): 1–18.

  41. C. M. Preece and A. R. C. Westwood: Transactions of the ASM, 1969, vol. 62: 418.

    CAS  Google Scholar 

  42. H. Ichinose and C. Oouchi: Trans. Jpn. Inst. Metals, 1969, vol. 10: 178.

    Article  CAS  Google Scholar 

  43. H. Ichinose and C. Oouchi: Trans. Jpn. Inst. Metals, 1968, vol. 9: 41.

    Article  CAS  Google Scholar 

  44. R. Rosenberg, I. Cadoff, in Fracture of Solids. ed. by D.C. Drucker, J.J. Gilman (Interscience, New York, 1963), p. 607

  45. J. P. Hilditch, J. R. Hurley, P. Skeldon, and D. R. Tice: Corrosion Science, 1995, vol. 37(3): 445–454.

    Article  CAS  Google Scholar 

  46. C. E. Price and R. S. Fredell: Metallurgical Transactions A, 1986, vol. 17(MAY): 889–898.

    Article  Google Scholar 

  47. C. F. Old and P. Trevena: Embrittlement of zinc by liquid metals, (1979).

  48. P. Skeldon, J. P. Hilditch, J. R. Hurley, and D. R. Tice: Corrosion Science, 1994, vol. 36(4): 593–610.

    Article  CAS  Google Scholar 

  49. V. Popovich: Fiziko-Khimicheskaya Mekhanika Materialov, 1981, vol. 17(5): 9–13.

    CAS  Google Scholar 

  50. M. M. Shea and N. S. Stoloff: Mater. Sci. Eng., 1973, vol. 12: 245–253.

    Article  CAS  Google Scholar 

  51. O. Hamdane, J. Bouquerel, I. Proriol-Serre, and J. B. Vogt: J. Mater. Process. Technol., (2011), vol. 211(12): 2085–90.

  52. D. Sapundjiev, S. Van Dyck, and W. Bogaerts: Corrosion Science, 2006, vol. 48(3): 577–594.

    Article  CAS  Google Scholar 

  53. B. Straumal, W. Gust, and D. Molodov: Journal of Phase Equilibria, 1994, vol. 15(4): 386–391.

    Article  CAS  Google Scholar 

  54. B. B. Straumal, B. S. Bokshtein, A. B. Straumal, and A. L. Petelin: JETP Lett., (2008), vol. 88(8): 537–42.

  55. K. Wolski, V. Laporte, N. Marié, and M. Biscondi: Interface Sci., 2001, vol. 9(3-4): 183–189.

    Article  CAS  Google Scholar 

  56. P. Wynblatt and D. Chatain: Mater. Sci. Eng. A, 2008, vol. 495(1-2): 119–125.

    Article  Google Scholar 

  57. K. Wolski and V. Laporte: Mater. Sci. Eng. A, 2008, vol. 495(1-2): 138–146.

    Article  Google Scholar 

  58. V. V. Popovich, I. G. Shtykalo, M. I. Chaevsldi, and F.-k. M. Materialov: Fiziko-Khimicheskaya Mekhanika Materialov, 1967, vol. 3(2): 127–133.

    CAS  Google Scholar 

  59. P. J. Fernandes and D. R. Jones: Engineering Failure Analysis, 1996, vol. 3(4): 299–302.

    Article  CAS  Google Scholar 

  60. C. Ye, J. B. Vogt, and I. Proriol Serre: Mater. Sci. Eng. A, 2014, vol. 608: 242–48.

  61. M. Henthorne: Corrosion, 2016, vol. 72(12): 1488–1518.

    Article  Google Scholar 

  62. H. G. Suzuki: ISIJ International, 1997, vol. 37(3): 250–254.

    Article  CAS  Google Scholar 

  63. G. Edmunds, E. A. Anderson, and R. K. Waring: in Symposium on Stress-Corrosion Cracking, ASTM-AIME, (1944) p. 7.

  64. H. Ichinose: Trans. Jpn. Inst. Metals, 1966, vol. 7: 7–9.

    Article  Google Scholar 

  65. N. I. Flegontova, B. D. Summ, and Y. V. Goryunova: Fiz. Metal. Metalloved., 1964, vol. 18(5): 724–29.

    CAS  Google Scholar 

  66. H. Ichinose: Transactions of the ASM, 1968, vol. 9: 35.

    CAS  Google Scholar 

  67. I. Dmukhovskaya and V. Popovich: Fiziko-Khimicheskaya Mekhanika Materialov, 1980, vol. 16(4): 42–46.

    CAS  Google Scholar 

  68. R. J. H. Wanhill: Corrosion, (1974), vol. 30(10): 371.

  69. T. Mae and S. Hori: Embrittlement of Aluminum by Liquid Gallium, (1984).

  70. H.-S. Nam and D. J. Srolovitz: Acta Materialia, (2009), vol. 57(5): 1546–53.

  71. W. A. Morgan: Ph.D Thesis, Ph.D. thesis, Cambridge University, (1954).

  72. C. F. Old and P. Trevena: Metal Sci. J., (1979), vol. 13(10): 591.

  73. W. D. Robertson: J. Metals, (1951), p. 1190.

  74. P. C. Hancock and M. B. Ives: Canadian Metallurgical Quarterly, 1971, vol. 10(3): 207–211.

    Article  Google Scholar 

  75. M. Watkins, K. L. Johnson, and N. N. Breyer: in Fourth Interamerican Conference on Materials Technology, (1975) .

  76. H. Nichols and W. Rostoker: Transactions of the ASM, 1963, vol. 56: 494.

    CAS  Google Scholar 

  77. H. Nichols and W. Rostoker: Trans. Metall. Soci. AIME, (1964), vol. 230.

  78. S. K. Marya and G. Wyon: Scripta Metallurgica, 1975, vol. 9: 1009.

    Article  CAS  Google Scholar 

  79. M. Naderi, M. Peterlechner, E. Schafler, S. V. Divinski, and G. Wilde: Acta Materialia, 2015, vol. 99: 196–205.

    Article  CAS  Google Scholar 

  80. Y. Kurata: J. Nucl. Mater., (2014), vol. 448(1-3).

  81. G. N. Vigilante, S. Bartolucci, J. Izzo, M. Witherell, and S. B. Smith: Materials and Manufacturing Processes, 2012, vol. 27(8): 835–839.

    Article  CAS  Google Scholar 

  82. M. I. Chaevskii, I. M. Toropovskaya, V. V. Popovich, and A. M. Datsishin: Soviet Materials Science, 1972, vol. 5(6): 580–585.

    Article  Google Scholar 

  83. W. Matthews, S.J. Savage, Welding Research Supplement 174–82 (1971)

  84. E. F. Nippes and D. J. Ball: pp. 0–6.

  85. C. Heiple, W. Bennett, and T. Rising: Mater. Sci. Eng., 1982, vol. 52(3): 277–289.

    Article  CAS  Google Scholar 

  86. D. Bhattacharya, L. Cho, H. Ghassemi-armaki, E. V. D. Aa, A. Pichler, K. O. Findley, and J. G. Speer: in Sheet Metal Welding Conference XVIII, Livonia, MI, October, 2018 pp. 1–10.

    Google Scholar 

  87. P. J. L. Fernandes and D. R. H. Jones: International Materials Reviews, (1997), vol. 42(6): 251–61.

  88. M. G. Nicholas and P. J. Fernback: J. Mater. Sci., 1991, vol. 26(15): 4008–4021.

    Article  CAS  Google Scholar 

  89. B. D. Summ, L. V. Ivanova, and Y. V. Goryunova: Fiziko-Khimicheskaya Mekhanika Materialov, 1965, vol. 1(6): 648–53.

    CAS  Google Scholar 

  90. M. M. Chaevskii and V. V. Popovich: Fiziko-Khimicheskaya Mekhanika Materialov, 1966, vol. 2(2): 143–148.

    CAS  Google Scholar 

  91. M. I. Chaevskii, V. F. Shatinskii, and V. V. Popovich: Soviet Materials Science, 1966, vol. 1(6): 445–448.

    Article  Google Scholar 

  92. M. I. Chaevskii: Fiziko-Khimicheskaya Mekhanika Materialov, 1965, vol. 1(3): 344–349.

    Google Scholar 

  93. E. M. Lyutii, V. V. Shirovkov, and V. I. Stephanishin: Fiziko-Khimicheskaya Mekhanika Materialov, 1991, vol. 27(2): 52–57.

    Google Scholar 

  94. Q. Shi, J. Liu, H. Luan, Z. Yang, W. Wang, W. Yan, Y. Shan, and K. Yang: J. Nucl. Mater., (2015), vol. 457.

  95. M. Yurechko, C. Schroer, A. Skrypnik, O. Wedemeyer, V. Tsisar, and J. Konys: J. Nucl. Mater., (2018), pp. 1–17, https://doi.org/10.1016/j.jnucmat.2018.09.056.

  96. I. Proriol Serre, J.-B. Vogt, and N. Nuns: Appl. Surf. Sci., (2019), vol. 471(October 2018): 36–42.

  97. W. R. Warke and N. N. Breyer: J. Iron Steel Inst., (1971), vol. 209(10): 779.

  98. S. Dinda and W. R. Warke: Mater. Sci. Eng., 1976, vol. 24(2): 199–208.

    Article  CAS  Google Scholar 

  99. D. Webster: Metallurgical Transactions A, 1987, vol. 18(12): 2181–2193.

    Article  Google Scholar 

  100. L. Allegra, R. G. Hart, and H. E. Townsend: Metallurgical Transactions A, 1983, vol. 14(2): 401–411.

    Article  CAS  Google Scholar 

  101. M. J. Kelley and N. S. Stoloff: Metallurgical Transactions A, 1975, vol. 6(1): 159–166.

    Article  CAS  Google Scholar 

  102. R. Stumpf and P. J. Feibelman: Phys. Rev. B, 1996, vol. 54(7): 5145–5150.

    Article  CAS  Google Scholar 

  103. M. Rajagopalan, M. A. Bhatia, K. N. Solanki, and M. A. Tschopp: in TMS Annual Meeting, (2014) .

  104. A. Legris, G. Nicaise, J. B. Vogt, and J. Foct: J. Nucl. Mater., 2002, vol. 301(1): 70–76.

    Article  CAS  Google Scholar 

  105. N. S. Stoloff and T. L. Johnston: Acta Metallurgica, (1963), vol. 11(4): 251–56.

  106. F. N. Rhines, J. A. Alexander, and W. F. Barclay: Transactions of the ASM, 1962, vol. 55: 22.

    CAS  Google Scholar 

  107. M. H. Kamdar: Embrittlement by liquid metals, Tech. rep., U. S. Army Research Office, Durham, (1972).

  108. S. P. Lynch: The Mechanism of Liquid-Metal Embrittlement-Crack Growth in Aluminum Single Crystals and Other Metals in Liquid-Metal Environments, Tech. rep., Departent of Defense Defense Science and Technology Organization Autonautical Research Laboratories, Melborne Victoria Austrailia, (1977).

  109. I. H. Lin and R. Thomson: Scripta Metallurgica, 1983, vol. 17: 1035–37.

    Article  CAS  Google Scholar 

  110. S. P. Lynch: Mechanisms of Liquid-Metal Embrittlement and Stress-Corrosion Cracking in High-Strength Aluminum Alloys and Other Materials.

  111. R. M. Latanision: in O. F. Devereux, A. J. McEvily, and R. W. Stachle (eds.), Corrosion Fatigue ; Chemistry, Mechanics , and Microstructure, Univ. of Connecticut , Publ. NACE, p. 185, (1971).

  112. R. L. Fleischer: Acta metallurgica, 1960, vol. 8: 598–604.

    Article  CAS  Google Scholar 

  113. T. P. Slavin and N. S. Stoloff: Mater. Sci. Eng., 1984, vol. 68(1): 55–71.

    Article  CAS  Google Scholar 

  114. W. M. Robertson: Trans. Metall. Soc. AIME, 1966, vol. 236(10): (1478).

  115. E. E. Glickman: Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, vol. 42(2): 250–266.

    Article  Google Scholar 

  116. H. H. Johnson and P. C. Paris: Engineering Fracture Mechanics, 1968, vol. 1(1): 3–45.

    Article  Google Scholar 

  117. E. E. Glickman: Interface Science, 2003, vol. 11(4): 451–59.

    Article  Google Scholar 

  118. H. S. Nam and D. J. Srolovitz: Physical Review Letters, 2007, vol. 99(2): 1–4.

    Article  Google Scholar 

  119. J. Luo, H. Cheng, K. M. Asl, C. J. Kiely, and M. P. Harmer: Science, 2011, vol. 333(6050): 1730–33.

    Article  CAS  Google Scholar 

  120. H. J. Vogel and L. Ratke: Acta metallurgica et materialia, 1991, vol. 39(4): 641–649.

    Article  CAS  Google Scholar 

  121. V. E. Scheil and K. E. Schiessl: Zeitschrift Fur Naturforschung A, (1949), vol. 4a: 524–26.

  122. R. F. Cheney, F. G. Hochgraf, and C. W. Spencer: Trans. Metall. Soc. AIME, 1961, vol. 221: 492–498.

    CAS  Google Scholar 

  123. C. Elbaum: Trans. Metall. Soc. AIME, 1959, vol. 215(3): 476–478.

    CAS  Google Scholar 

  124. R. C. Hugo and R. G. Hoagland: Scripta Materialia, 1998, vol. 38(3): 523–529.

    Article  CAS  Google Scholar 

  125. H. S. Nam and D. J. Srolovitz: Phys. Rev. B, 2007, vol. 76(18): 1–14.

    Article  Google Scholar 

  126. W. D. Kaplan, D. Chatain, P. Wynblatt, and W. C. Carter: J. Mater. Sci., 2013, vol. 48(17): 5681–17.

    Article  CAS  Google Scholar 

  127. P. R. Cantwell, M. Tang, S. J. Dillon, J. Luo, G. S. Rohrer, and M. P. Harmer: Acta Materialia, (2014), vol. 62(1).

  128. M. A. Gibson and C. A. Schuh: Scripta Materialia, 2016, vol. 113: 55–58.

    Article  CAS  Google Scholar 

  129. P. Lejček, M. Šob, and V. Paidar: Progress in Materials Science, 2017, vol. 87: 83–139.

    Article  Google Scholar 

  130. S. B. Kadambi, F. Abdeljawad, and S. Patala: Comput. Mater. Sci., (2020), vol. 175(January): 109533.

  131. D. G. Kolman: Corrosion, 2019, vol. 75(1): 42–57.

    Article  CAS  Google Scholar 

  132. W. Ding, Z. Jiang, M. Zheng, M. Jiang, and J. Xin: J. Nucl. Mater., (2018), vol. 509: 212–17.

  133. S. Hemery, C. Berdin, T. Auger, and M. Bourhi: J. Nucl. Mater., (2016).

  134. K. Yun and H. S. Nam: Mater. Trans., (2014).

  135. Y. Xu, Y. Zhang, X. Li, W. Liu, D. Li, C. S. Liu, B. C. Pan, and Z. Wang: Corrosion Sci., (2017).

  136. E.E. Glickman, B.S. Bokshtein, J. Philibert, L. Klinger, B.B. Straumal, W. Lojkowski, V. Belousov, D. Gupta, J. Bernardini, Defect and Diffusion Forum 156, 265–72 (1998)

Download references

Acknowledgments

This work is supported by the National Science Foundation Award Number DMR-2011166.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. E. Norkett or V. M. Miller.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 8, 2020, accepted March 17, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Norkett, J.E., Dickey, M.D. & Miller, V.M. A Review of Liquid Metal Embrittlement: Cracking Open the Disparate Mechanisms. Metall Mater Trans A 52, 2158–2172 (2021). https://doi.org/10.1007/s11661-021-06256-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06256-y

Navigation