Skip to main content

Advertisement

Log in

Effect of Thermomechanical Treatment on Functional Properties of Biodegradable Fe-30Mn-5Si Shape Memory Alloy

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The structure, martensitic γε transformation temperatures, Young’s modulus, mechanical properties, and electrochemical behavior of Fe-30Mn-5Si (wt pct) biodegradable shape memory alloy subjected to various thermomechanical treatments (TMT) comprising hot rolling or cold rolling with post-deformation annealing were characterized by optical microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, differential scanning calorimetry, tensile testing, open circuit potential, and polarization curves measurements in Hanks’ solution, as compared to reference heat treatment. The optimum combination of mechanical properties (low Young’s modulus, high tensile strength, and appropriate ductility) for biomechanical compatibility was obtained after TMT with hot rolling at 600 and 800 °C due to the formation of favorable dynamically polygonized and recrystallized structures and decrease in the γ↔ε transformation starting temperature down to the human body temperature. The TMT did not show a significant effect on the corrosion rate as compared to the appropriate corrosion rate after the reference heat treatment. It is concluded that the TMT with hot rolling at 600 or 800 °C, which provides an optimum combination of the required corrosion rate in the simulation body fluid with high biomechanical compatibility, can be considered a promising treatment of Fe-30Mn-5Si biodegradable alloy for bone implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Park and R.S. Lakes (2007) Biomaterials–An introduction, Springer: New York

    Google Scholar 

  2. M. Saini, Y. Singh, P. Arora, V. Arora, and K. Jain (2015) World J. Clin. Cases, 3(1), 52-57

    Article  Google Scholar 

  3. N.S. Manam, W.S.W. Harun, D.N.A. Shri, S.A.C. Ghani, T. Kurniawan, M.H. Ismail, and M.H.I. Ibrahim, J. Alloys Compd., 2017, vol. 701, pp. 698-715. https://doi.org/10.1016/j.jallcom.2017.01.196

    Article  CAS  Google Scholar 

  4. T. Narushima: Metals for Biomedical Devices, 2nd ed., M. Niinomi (ed.); Elsevier, 2019, pp. 495–521. https://doi.org/10.1016/B978-0-08-102666-3.00019-5

  5. F. Witte, A. Eliezer and S. Cohen, Adv. Mat. Res., 2010, vol. 95, pp. 3-7. DOI: 10.4028/www.scientific.net/AMR.95.3

    Article  CAS  Google Scholar 

  6. F. Witte and A. Eliezer: Degradation of Implant Materials, N. Eliaz (ed.), Springer Science+Business Media: New York 2012, pp. 93–109. https://doi.org/10.1007/978-1-4614-3942-4_5

  7. H. Hermawan: Biodegradable Metals - From Concept to Applications, Springer, Berlin 2012. https://doi.org/10.1007/978-3-642-31170-3

  8. D. Vojtech, J. Kubasek, J. Capek, A. Michalcova, and I. Pospisilova, Solid State Phenom., 2015, vol. 227, pp. 431-4. https://doi.org/10.4028/www.scientific.net/SSP.227.431

    Article  CAS  Google Scholar 

  9. M. Heiden, E. Walker, and L. Stanciu, J. Biotechnol. Biomater., 2015, vol. 5, 1000178. https://doi.org/10.4172/2155-952X.1000178

    Article  Google Scholar 

  10. R. Drevet, Y. Zhukova, P. Malikova, S. Dubinskiy, A. Korotitskiy, Y. Pustov, and S. Prokoshkin: Metall. Mater. Trans. A, 2018, vol. 49, pp. 1006-13. https://doi.org/10.1007/s11661-017-4458-2

    Article  CAS  Google Scholar 

  11. Y. Su, I. Cockerill, Y. Wang, Y.-X. Qin, L. Chang, Y. Zheng, and D. Zhu, Trends Biotechnol., 2019, vol. 37, pp. 428-41. https://doi.org/10.1016/j.tibtech.2018.10.009

    Article  CAS  Google Scholar 

  12. Y. Liu, Y. Zheng, X.-H. Chen, J.-A. Yang, H. Pan, D. Chen, L. Wang, J. Zhang, D. Zhu, S. Wu, K. W. K. Yeung, R.-C. Zeng, Y. Han, and S. Guan, Adv. Funct. Mater., 2019, vol. 29, 1805402. https://doi.org/10.1002/adfm.201805402

    Article  CAS  Google Scholar 

  13. J. Venezuela, M.S. Dargusch, Curr. Opin. Solid State Mater. Sci., 2020, vol. 24, 100822. https://doi.org/10.1016/j.cossms.2020.100822

    Article  CAS  Google Scholar 

  14. H. Kabir, K. Munir, C. Wen, and Y. Li, Bioact. Mater., 2021, vol. 6, pp. 836–79. https://doi.org/10.1016/j.bioactmat.2020.09.013

    Article  Google Scholar 

  15. A. Sato, E. Chishima, K. Soma, and T. Mori, Acta Metall., 1982, vol. 30, pp. 1177-83. https://doi.org/10.1016/0001-6160(82)90011-6

    Article  CAS  Google Scholar 

  16. T. Maki: Shape Memory Materials, K. Otsuka and C.M. Wayman (Eds.), Cambridge University Press, 1999, pp. 117–32.

  17. V. Brailovski, S. Prokoshkin, P. Terriault, and F. Trochu: Shape Memory Alloys: Fundamentals, Modeling and Applications; ETS: Montreal, QU, Canada, 2003.

    Google Scholar 

  18. A.A. Gulyaev, J. Phys. IV, 1995, vol. 5 (C8), pp. 469-74. https://doi.org/10.1051/jp4:1995871

    Article  CAS  Google Scholar 

  19. T.Y. Hsu and Z. Xu, Mater. Sc. Eng. A, 1999, vol. 273–275, pp. 494-7. https://doi.org/10.1016/S0921-5093(99)00386-X

    Article  Google Scholar 

  20. A. Sato, Y. Yamaji, and T. Mori: Acta Metall., 1986, vol. 34, pp. 287-94. https://doi.org/10.1016/0001-6160(86)90199-9

    Article  CAS  Google Scholar 

  21. E.Z. Vintaikin, A.A. Gulyaev, A.B. Oralbaev, N.A. Polyakova, and E.L. Svistunova, Metallofizika, 1991, vol. 13, pp. 43-51 (in Russian).

    CAS  Google Scholar 

  22. B. Liu, Y.F. Zheng, L. Ruan, Mater. Letters, 2011, vol. 65, pp. 540–3. https://doi.org/10.1016/j.matlet.2010.10.068

    Article  CAS  Google Scholar 

  23. M. Fântânariu, L.C. Trincă, C. Solcan, A. Trofin, S. Strungaru, E.V. Şindilar, G. Plăvan, and S. Stanciu, Appl. Surf. Sci., 2015, vol. 352, pp. 129–39. https://doi.org/10.1016/j.apsusc.2015.04.197

    Article  CAS  Google Scholar 

  24. L.C. Trincă, L. Burtan, D. Mareci, B.M. Fernández-Pérez, I. Stoleriu, T. Stanciu, S. Stanciu, C. Solcan, J. Izquierdo, R.M. Souto, Mater. Sc. Eng. C, 2021, vol. 118, 111436. https://doi.org/10.1016/j.msec.2020.111436

    Article  CAS  Google Scholar 

  25. H. Hermawan, A. Purnama, D. Dubé, J. Couet, and D. Mantovani, Acta Biomater., 2010, vol. 6, pp. 1852-60. https://doi.org/10.1016/j.actbio.2009.11.025

    Article  CAS  Google Scholar 

  26. [26] H. Hermawan, D. Dubé, and D. Mantovani, J. Biomed. Mater. Res. A, 2010, vol. 93A, pp.1-11. https://doi.org/10.1002/jbm.a.32224

    Article  CAS  Google Scholar 

  27. M. Schinhammer, A.C. Hänzi, J.F. Löffler, and P.J. Uggowitzer, Acta Biomater., 2010, vol. 6, pp. 1705-13. https://doi.org/10.1016/j.actbio.2009.07.039

    Article  CAS  Google Scholar 

  28. M. Schinhammer, C.M. Pecnik, F. Rechberger, A.C.Hänzi, J.F. Löffler, and P.J. Uggowitzer, Acta Mater., 2012, vol. 60, pp. 2746-56. https://doi.org/10.1016/j.actamat.2012.01.041

    Article  CAS  Google Scholar 

  29. M. Rătoi, S. Stanciu, N. Cimpoeşu, I. Cimpoeşu, B. Constantin, and C. Paraschiv, Adv. Mater. Res., 2013, vol. 814, pp. 110-14. https://doi.org/10.4028/www.scientific.net/AMR.814.110

    Article  CAS  Google Scholar 

  30. T. Kraus, F. Moszner, S. Fischerauer, M. Fiedler, E. Martinelli, J. Eichler, F. Witte, E. Willbold, M. Schinhammer, M. Meischel, P.J. Uggowitzerb, J.F. Löffler, and A. Weinberg, Acta Biomater., 2014, vol. 10, pp. 3346-53. https://doi.org/10.1016/j.actbio.2014.04.007

    Article  CAS  Google Scholar 

  31. H. Kitabata, R. Waksman, and B. Warnack, Cardiovasc. Revasc. Med., 2014, vol. 15, pp. 109-16. https://doi.org/10.1016/j.carrev.2014.01.011

    Article  Google Scholar 

  32. N. Safaie, M. Khakbiza, S. Sheibani, and P. SotoudehBagha, Procedia Mater. Sci., 2015, vol. 11, pp. 381-85. https://doi.org/10.1016/j.mspro.2015.11.134

    Article  CAS  Google Scholar 

  33. H. Li, Y. Zheng, and L. Qin, Prog. Nat. Sci.-Mater., 2014, vol. 24, pp. 414-22. https://doi.org/10.1016/j.pnsc.2014.08.014

    Article  CAS  Google Scholar 

  34. A. Francis, Y. Yang, S. Virtanen, and A.R. Boccaccini, J. Mater. Sci: Mater Med., 2015, vol. 26, 138. https://doi.org/10.1007/s10856-015-5473-8

    Article  CAS  Google Scholar 

  35. J. Čapek, J. Kubásek, D. Vojtěch, E. Jablonská, J. Lipov, and T. Ruml, Mater. Sc. Eng. C, 2016, vol. 58, pp. 900-08. https://doi.org/10.1016/j.msec.2015.09.049

    Article  CAS  Google Scholar 

  36. Y.P. Feng, A. Blanquer, J. Fornell, H. Zhang, P. Solsona, M. DolorsBaró, S. Suriñach, E. Ibáñez, E. GarcíaLecina, X. Wei, R. Li, L. Barrios, E. Pellicer, C. Nogués (2016) J. Sort. J. Mater. Chem. B. 4, 6402-12.

    Article  CAS  Google Scholar 

  37. E. Mouzou, C. Paternoster, R. Tolouei, A. Purnama, P. Chevallier, D. Dubé, F. Prima, and D. Mantovani, Mater. Sc. Eng. C, 2016, vol. 61, pp. 564-73. https://doi.org/10.1016/j.msec.2015.12.092

    Article  CAS  Google Scholar 

  38. S. Stanciu, A. Ursanu, L.C. Trincă, T.A. Elena, S. Carmen, C. Munteanu, N. Cimpoesu, D. Acatrinei, E.V. Sindilar, T. Stanciu, M. Fântanariu, L. Topliceanu (2016) Environ. Eng. Manag. J. 15, 973-80

    Article  CAS  Google Scholar 

  39. M. Dehestani, K. Trumble, H. Wang, H. Wang, and L.A. Stanciu, Mater. Sc. Eng. A, 2017, vol. 703, pp. 214-26. https://doi.org/10.1016/j.msea.2017.07.054

    Article  CAS  Google Scholar 

  40. W. Lin, L. Qin, H. Qi, D. Zhang, G. Zhang, R. Gao, H. Qiu, Y. Xia, P. Cao, X. Wang, W. Zheng, Acta Biomater., 2017, vol. 54, pp. 454-68. https://doi.org/10.1016/j.actbio.2017.03.020

    Article  CAS  Google Scholar 

  41. Y. Li, H. Jahr, K. Lietaert, P. Pavanram, A. Yilmaz, L.I. Fockaert, M.A. Leeflang, B. Pouran, Y. Gonzalez-Garcia, H. Weinans, J.M.C. Mol, J. Zhou, and A.A. Zadpoor, Acta Biomater., 2018, vol. 77, pp. 380-93. https://doi.org/10.1016/j.actbio.2018.07.011

    Article  CAS  Google Scholar 

  42. M. CaligariConti, D. Aquilina, C. Paternoster, D. Vella, E. Sinagra, D. Mantovani, G. Cassar, P. SchembriWismayer, J. Buhagiar (2018) Heliyon. 4, 00926. https://doi.org/10.1016/j.heliyon.2018.e00926

    Article  Google Scholar 

  43. P. Sharma and P.M. Pandey, Mater. Sc. Eng. C, 2019, vol. 99, pp. 838-52.«

    Article  CAS  Google Scholar 

  44. H.-S. Han, S. Loffredo, I. Jun, J. Edwards, Y.C. Kim, H.-K. Seok, F. Witte, D. Mantovani, and S. Glyn-Jones, Mater. Today, 2019, vol. 23, pp. 57-71. https://doi.org/10.1016/j.mattod.2018.05.018

    Article  CAS  Google Scholar 

  45. S. Mandal, R. Ummadi, M. Bose, V.K. Balla, and M. Roy, Mater. Lett., 2019, vol. 237, pp. 323-27. https://doi.org/10.1016/j.matlet.2018.11.117

    Article  CAS  Google Scholar 

  46. S.M. Huang, E.A. Nauman, and L.A. Stanciu, Mater. Sc. Eng. C, 2019, vol. 99, pp. 1048-57. https://doi.org/10.1016/j.msec.2019.02.055

    Article  CAS  Google Scholar 

  47. Y.A. Pustov, Y.S. Zhukova, P.E. Malikova, S.D. Prokoshkin, and S.M. Dubinskii: Prot. Met. Phys. Chem. Surf., 2018, vol. 54, pp. 469-76. https://doi.org/10.1134/S2070205118030139

    Article  CAS  Google Scholar 

  48. J.H. Hanks and R.E. Wallace, Proc. Soc. Exp. Biol. Med., 1949, vol. 71, pp. 196–200. https://doi.org/10.3181/00379727-71-17131

    Article  CAS  Google Scholar 

  49. R. Winston Revie (Ed.) Uhlig’s Corrosion Handbook, 3rd Edition, John Wiley & Sons, Inc., 2011. https://doi.org/10.1002/9780470872864

  50. S.D. Prokoshkin, I.Y. Khmelevskaya, V. Brailovski, F. Trochu, S. Turenne, V.Y. Turilina, and K.E. Inaekyan, J. Phys. IV, 2003, vol.112, pp. 789-93. https://doi.org/10.1051/jp4:20031000

    Article  CAS  Google Scholar 

  51. S.D. Prokoshkin, S. Turenne, I.Y. Khmelevskaya, V. Brailovski, and F. Trochu, Can. Metall. Q., 2000, vol. 39, pp. 225-34. https://doi.org/10.1179/cmq.2000.39.2.225

    Article  CAS  Google Scholar 

  52. V. Pushin, Phys. Met. Metallogr., 2000, vol. 90, pp. S68-S95.

    Google Scholar 

  53. J.F. Wan, S.P. Chen, T.Y. Hsu, and Y.N. Huang, Mater. Sc. Eng. A, 2006, vol. 438–440, pp. 887-90. https://doi.org/10.1016/j.msea.2006.02.152

    Article  CAS  Google Scholar 

  54. K. Otsuka and C.M. Wayman: Shape Memory Materials, K. Otsuka and C.M. Wayman (Eds.), Cambridge University Press, 1999, pp. 1-26.

Download references

Acknowledgments

The authors are thankful to Prof. Vladimir Brailovski from the Ecole de Technologie Superieure (Montreal) for his assistance in carrying out the DSC and mechanical tests. The work was carried out with the financial support of the Russian Science Foundation (Project # 19-79-10270), and RFBR (Project # 18-08-01193 A) in part of electrochemical characterization method optimization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Zhukova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 10 2020; accepted February 17, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prokoshkin, S., Pustov, Y., Zhukova, Y. et al. Effect of Thermomechanical Treatment on Functional Properties of Biodegradable Fe-30Mn-5Si Shape Memory Alloy. Metall Mater Trans A 52, 2024–2032 (2021). https://doi.org/10.1007/s11661-021-06217-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06217-5

Navigation