Skip to main content
Log in

Evaluation of Boundary Interface Character as a Function of Annealing Temperature in 304HCu Stainless Steel

  • Brief Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This article presents a systematic study to highlight micromechanisms associated with the grain interface character distribution of SS304HCu. The low-energy coincidence-site-lattice (CSL) boundary fraction is found to be increased (33 to 62 pct) with an increase in annealing temperature from 1073 K to 1323 K after 50 pct cold rolling. Furthermore, an increase in annealing temperature has shown reduction/saturation for CSL (~ 58 pct) due to diffusion-assisted grain boundary migration. Associated effective grain boundary energy has been calculated to rationalize the energy minimization process during annealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. R. Viswanathan, W. Bakker, J. Mater. Eng. Perform., 2001, vol. 10(1), pp. 81-95.

    Article  CAS  Google Scholar 

  2. H.L. Hendrix: Advantages of a-UC for CO2 capture in pulverized coal units advances in materials technology for fossil power plants, in: Proceedings from the Seventh International Conference. October 22–25, 2013, Waikoloa, Hawaii, Published by ASM International, 2014, pp. 60–73.

  3. M. K. Dash, T. Karthikeyan, R. Mythili, V. D. Vijayanand, S. Saroja, Metall. Mater. Trans A, 2017, vol. 48, pp. 4883-4894.

    Article  Google Scholar 

  4. C. Y. Chi, H. Y. Yu, J. X. Dong, Acta Metall. Sinica, 2011, vol. 24, pp. 141–147.

    CAS  Google Scholar 

  5. S. Mandal, A. K. Bhaduri, V. S. Sarma, J. Mater. Sci., 2011, vol. 46, pp. 275-284.

    Article  CAS  Google Scholar 

  6. C. S. Kim, Y. Hu, G. S. Rohrer, V. Randle, Scripta Mater., 2005, vol. 52, pp. 633-637.

    Article  CAS  Google Scholar 

  7. T. Watanabe, H. Fujii, H. Oikawa, K. Arai, Acta. Metall. Mater., 1989, vol. 37, pp. 941-952.

    Article  CAS  Google Scholar 

  8. T. Watanabe, Res. Mechanica, 1984, vol. 11, pp. 47–84.

    CAS  Google Scholar 

  9. R. Singh, S. G. Chowdhury, I. Chattoraj, Metall. Mater. Trans A, 2008, vol. 39, pp. 2504-2512.

    Article  CAS  Google Scholar 

  10. C. B. Thomson, V. Randle, Acta Mater., 1997, vol. 45, pp. 4909–4916.

    Article  CAS  Google Scholar 

  11. G. Palumbo: U.S. Patent No. 5, 1998, vol. 817, p. 193.

  12. D. G. Brandon, Acta Metall., 1996, vol. 14, pp. 1479–1484.

    Article  Google Scholar 

  13. J. K. Mason, Acta Materialia, 2015, vol. 94, pp. 162–171.

    Article  CAS  Google Scholar 

  14. T. Uesugi, K. Higashi, J. Mater. Sci., 2011, vol. 46, pp. 4199–4205.

    Article  CAS  Google Scholar 

  15. T. Karthikeyan, M. K. Dash, S. Saroja, M. Vijayalakshmi, Metall. Trans. A, 2013, vol. 44, pp. 1673-1685.

    Article  CAS  Google Scholar 

  16. M. K. Dash, R. Mythili, A. Dasgupta, S. Saroja, Metall. Mater. Trans A, 2018, vol. 49, pp. 2843-2453.

    Article  Google Scholar 

  17. G. Owen, V. Randle, Scripta Mater., 2006, vol. 55, pp. 959-962.

    Article  CAS  Google Scholar 

  18. R. Jones, V. Randle, Mater. Sci. Eng. A, 2010, vol. 527, pp. 4275-4280.

    Article  Google Scholar 

  19. H. Kokawa, M. Shimada, M. Michiuchi, Z. Wang, Y. Sato, Acta. Metall. Mater., 2007, vol. 55, pp. 5401-5407.

    Article  CAS  Google Scholar 

  20. D. N. Wasnik, V. Kain, I. Samajdar, B. Verlindenm, P. K. De, Acta Metall., 2002, vol. 50, pp. 4587–4601.

    CAS  Google Scholar 

  21. T. S. Duh, J. J. Kai, F. R. Chen, L. H. Wang, J. Nucl. Mater., 2001, 294: pp. 267-294.

    Article  CAS  Google Scholar 

  22. R. Beltran, J. G. Maldonaldo, L. E. Murr, W. W. Fisher, Acta Mater., 1997, vol. 45, pp. 4351–4360.

    Article  CAS  Google Scholar 

  23. L. Tan, K. Sridharan, T. R. Allen, R. K. Nanstad, D. A. McClintock, J. Nuc. Mater., 2008, vol. 374, pp. 270-280.

    Article  CAS  Google Scholar 

  24. S. Kobayashi, T. Inomata, H. Kobayashi, S. Tsurekawa and T. Watanabe: J. Mater. Sci., 2008, vol. 43, pp. 3792-3799.

    Article  CAS  Google Scholar 

  25. B. W. Reed, M. Kumar, R. W. Minich, R.E. Rudd, Acta. Metall. Mater., 2008, vol. 56, pp. 3278-3289.

    Article  CAS  Google Scholar 

  26. S. Mahajan, C. S. Pande, M. A. Imam, B. B. Rath, Acta Mater., 1997, vol. 45, pp. 2633–2638.

    Article  CAS  Google Scholar 

  27. C. S. Pande, M. A. Imam, B. B. Rath, Metall. Mater. Trans. A, 1990, vol. 21, pp. 2891–2896.

    Article  CAS  Google Scholar 

  28. G. Baro, H. Gleiter, Z. Metallkd., 1972, vol. 63, pp. 661–667.

    Google Scholar 

  29. D. L. Engelberg, F. J. Humphreys, T. J. Marrow, J. Microscopy, 2008, vol. 230, pp. 435–444.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to convey his sincere thanks to Dr. Divakar Ramachandran, Associate Director, Materials Engineering Group and also to the anonymous reviewer for his/her valuable remarks, corrections and suggestions to improve the quality of the paper. I would like to acknowledge Dr. Saju K. Albert, Director, Metallurgy and Materials Group, and Dr. A. K. Bhaduri, Director, Indira Gandhi Centre for Atomic Research for their sustained support and encouragement during this work. I thank Physical Metallurgy Division, Indira Gandhi Centre for Atomic Research at Kalpakkam for extending their experimental facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manmath Kumar Dash.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 25, 2020; accepted January 17, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dash, M.K. Evaluation of Boundary Interface Character as a Function of Annealing Temperature in 304HCu Stainless Steel. Metall Mater Trans A 52, 1180–1184 (2021). https://doi.org/10.1007/s11661-021-06164-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06164-1

Navigation