Skip to main content
Log in

Micromechanics Based Modeling of Effect of Sigma Phase on Mechanical and Failure Behavior of Duplex Stainless Steel

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Duplex stainless steels (DSSs) have been widely used in many industries, since their combining austenitic and ferritic microstructure provided superior mechanical properties and corrosion resistance. However, after welding or heat-treating DSSs undesirable secondary phases such as chi phase, CrN and sigma-phase easily occurred which most likely led to deteriorated toughness. In this work, effects of sigma phase on mechanical characteristics of DSS grade SAF 2507 were described by a micromechanics based FE approach. Tensile, Charpy impact and micro-hardness tests of DSS samples with varying percentages of sigma phase were initially performed. Representative volume element (RVE) models on the microstructure level of investigated DSS specimens were generated. Then, RVE simulations coupled with the Gurson–Tvergaard–Needleman ductile damage model were conducted under uniaxial deformation. Flow stress curves of the single phases were defined with regard to the results of nano-indentation tests. In addition, damage parameters were determined for each individual phase by means of hybrid method between experiment and simulation. The predicted overall stress-strain responses and observed damage occurrences were fairly validated with those from the tensile test results. Finally, the proposed RVE modeling was applied to a DSS welded specimen. It was found that local failure behaviors of different zones on deformed sample containing varying amounts of sigma phase could be well described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. J.O. Nilsson: Mater. Sci. Tech., 1992, vol. 8, pp. 685–700.

    Article  CAS  Google Scholar 

  2. G. Chail and P. Kangas: Procedia Struct. Integr., 2016, vol. 2, pp. 1755–62.

    Article  Google Scholar 

  3. T. Zhou, Y. Xiong, Y. Yue, Y. Lu, Y.N. Chen, T.T. He, F.Z. Ren, H. Singh, J. Koemi, M. Huttula, W. Cao: Mater. Sci. Eng. A, 2019, vol. 766, pp. 138352.

    Article  CAS  Google Scholar 

  4. M.H.E. Seshweni, A. Moloto, S. Aribo, S.R. Oke, O.O. Ige, P.A. Olubambi: Mater. Today Proc., 2020, pp. 10–13.

  5. M. Chen, C. Jiang, Z. Xu, V. Ji: Appl. Surf. Sci., 2019, vol. 481, pp. 226–33.

    Article  CAS  Google Scholar 

  6. G.S. Da Fonseca, P.M. De Oliveira, M.G. Diniz, D.V. Bubnoff, J.A. De Castro: Mater. Res., 2017, vol. 20, pp. 249–55.

    Article  Google Scholar 

  7. Q. Zhou, J. Liu, Y. Gao: Mater. Design, 2019, vol. 181, pp. 108056.

    Article  CAS  Google Scholar 

  8. I.V. Aguiar, D.P. Escobar, D.B. Santos, P.J. Modenesi: Rev. Mater., 2015, vol. 20, pp. 212–26.

    Google Scholar 

  9. Y.Q. Wang, H. Sun, N. Li, Y. Xiong, H. Jing: Int. J. Electrochem. Sci., 2018, vol. 13, pp. 9868–87.

    CAS  Google Scholar 

  10. A. Bahrami, A. Ashrafi, A.M. Rafiaei, M.Y. Mehr: Eng. Fail. Anal., 2017, vol. 82, pp. 56–63.

    Article  CAS  Google Scholar 

  11. N.A. McPhearson, Y. Li, T.N. Baker: Sci. Techn. Welding, 2000, vol. 5, pp. 235–44.

    Article  Google Scholar 

  12. R. Badji, M. Bouabdallah, B. Bacroix, C. Kahloun, B. Belkessa, H. Maza: Mater. Charac., 2008, vol. 59, pp. 447–53.

    Article  CAS  Google Scholar 

  13. M.R.E. Koussy, I.S.E. Mahallawi, W. Khalifa, M.M.A. Dawood, M. Bueckins: Mater. Sci. Techn., 2004, vol. 20, pp. 375–81.

    Article  Google Scholar 

  14. A. Ramazani, K. Mukherjee, U. Prahl, W. Bleck: Comput. Mater. Sci., 2012, vol. 52, pp. 46–54.

    Article  CAS  Google Scholar 

  15. A. Ramazani, K. Mukherjee, H. Quade, U. Prahl, W. Bleck: Mater. Sci. Eng. A, 2013, vol. 560, pp. 129–39.

    Article  CAS  Google Scholar 

  16. A. Rahnama and S. Sridhar: Mech. Mater., 2019, vol. 131, pp. 136–40.

    Article  Google Scholar 

  17. C.U. Jeong, Y.U. Heo, J.Y. Choi, W. Woo, S.H. Choi: Int. J. Plast., 2015, vol. 75, pp. 22–38.

    Article  CAS  Google Scholar 

  18. H. Gholipour, F.R. Biglari, K. Nikbin: Int. J. Mech. Sci., 2019, vol. 164, pp. 105170.

    Article  Google Scholar 

  19. F. Rahimidehgolan, G. Majzoobi, F. Alinejad, J.F. Sola: Appl. Sci., 2017, vol. 7.

  20. P. Zhang, M. Pereira, B. Rolfe, D. Wilkosz, B. Abeyrathna, M. Weiss: J. Phys. Conf. Ser., 2018, pp. 1063.

  21. R. Chhibber, H. Singh, N. Arora, B.K. Dutta: Mater. Design, 2012, vol. 36, pp. 258–74.

    Article  CAS  Google Scholar 

  22. T. Sirinakorn, S. Wongwises, V. Uthaisangsuk: Mater. Design, 2014, vol. 64, pp. 729–42.

    Article  CAS  Google Scholar 

  23. Z. Wang, L. Ma, L. Wu, H. Yu: Acta Mech. Solida Sin., 2012, vol. 25, pp. 9–21.

    Article  CAS  Google Scholar 

  24. N. Vajragupta, V. Uthaisangsuk, B. Schmaling, S. Muenstermann, A. Hartmaier, W. Bleck: Comp. Mater. Sci., 2012, vol. 54, pp. 271–79.

    Article  CAS  Google Scholar 

  25. T. Sirinakorn and V. Uthaisangsuk: Int. J. Damage Mech., 2018, vol. 27, pp. 409–38.

    Article  CAS  Google Scholar 

  26. N. Llorca-Isern, H. López-Luque, I. López-Jiménez, M.V. Biezma: Mater. Charac., 2016, vol. 112, pp. 20–29.

    Article  CAS  Google Scholar 

  27. A. Kisasoz, A. Karaaslan, Y. Bayrak: Met. Sci. Heat Treat., 2017, vol. 58, pp. 704–06.

    Article  CAS  Google Scholar 

  28. Z. Fei, Z. Pan, D. Cuiuri, H. Li, S. Van Duin, Z. Yu: J. Manu. Process, 2019, vol. 45, pp. 340–55.

    Article  Google Scholar 

  29. R. Magnabosco: Mater. Res., 2009, vol. 12, pp. 321–27.

    Article  CAS  Google Scholar 

  30. C.C. Hsieh and W. Wu: ISRN Metall., 2012, pp. 1–16.

  31. Y.Q. Wang, J. Han, H.C. Wu, B. Yang, X.T. Wang: Nucl. Eng. Design, 2013, vol. 259, pp. 1–7.

    Article  CAS  Google Scholar 

  32. J. Havrankova, J. Vrestal, L.G. Wang, M. Sob: Phys. Rev. B, 2001, vol. 63, pp. 174104.

    Article  Google Scholar 

  33. W. Liu, X.G. Lu, P. Boulet, M.C. Record, Q.M. Hu: Fluid Phase Equi., 2018, vol. 459, pp. 238–43.

    Article  CAS  Google Scholar 

  34. V.A. Hosseini, L. Karlsson, K. Hurtig, I. Choquet, D. Engelberg, M.J. Roy, C. Kumara: Mater. Design, 2017, vol. 121, pp. 11–23.

    Article  CAS  Google Scholar 

  35. K. Paveebunvipak and V. Uthaisangsuk: Mater. Design, 2018, vol. 160, pp. 731–51.

    Article  CAS  Google Scholar 

  36. S.N. Li, J.B. Liu, B.X. Liu: Comput. Mater. Sci., 2015, vol. 98, pp. 424–29.

    Article  CAS  Google Scholar 

  37. C. Wang, Y. Wu, Y.A. Guo, J. Guo, L. Zhou: J. Alloys Compd., 2019, vol. 784, pp. 266–75.

    Article  CAS  Google Scholar 

  38. P. Tao, J.M. Gong, Y.F. Wang, Y. Jiang, Y. Li, W.W. Cen: Results Phys., 2018, vol. 11, pp. 377–84.

    Article  Google Scholar 

  39. J. Johansson, M. Oden, X.H. Zeng: Acta Mater., 1999, vol. 47, pp. 2669–84.

    Article  CAS  Google Scholar 

  40. R. Rodríguez and I. Gutierrez: Mater. Sci. Eng. A, 2003, vol. 361, pp. 377–84.

    Article  Google Scholar 

  41. I. Arrayago, E. Real, L. Gardner: Mater. Design, 2015, vol. 87, pp. 540–52.

    Article  CAS  Google Scholar 

  42. P. Szabracki, M. Bramowicz, T. Lipinski: J. Power Techn., 2012, vol. 92, pp. 166–73.

    CAS  Google Scholar 

  43. T. Borvika, H. Lange, L.A. Marken, M. Langseth, O.S. Hopperstad, M. Aursand, G. Rorvik: Mater. Sci. Eng. A, 2010, vol. 527, pp. 6945–55.

    Article  Google Scholar 

  44. R.L. Peng, G. Chai, T. Stein, T. Manns, S. Johansson: Mater. Sci. Forum, 2011, vol. 681, pp. 516–21.

    Article  CAS  Google Scholar 

  45. V. Uthaisangsuk, U. Prahl, S. Münstermann, W. Bleck: Comput. Mater. Sci., 2008, vol. 43, pp. 43–50.

    Article  CAS  Google Scholar 

  46. V. Tvergaard: Int. J. Fract., 1982, vol. 18, pp. 237–52.

    Article  Google Scholar 

  47. V. Uthaisangsuk, U. Prahl, W. Bleck: Eng. Fract. Mech., 2011, vol. 78, pp. 469–486.

    Article  Google Scholar 

  48. S. Kingklang, V. Uthaisangsuk: Eng. Fract. Mech., 2018, vol. 191, pp. 82–101.

    Article  Google Scholar 

  49. K. Perzynski, J.T. Wang, K. Radwanski, K. Muszka, L. Madej: Mech. Mater., 2019. vol. 133, pp. 154–164.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge King Mongkut’s University of Technology Thonburi (KMUTT), Thailand Research Fund (TRF) and Shell Centennial Education Foundation, Shell Company of Thailand for the financial supports (RSA6180057).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Uthaisangsuk.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 25, 2020; accepted January 17, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meena, C., Uthaisangsuk, V. Micromechanics Based Modeling of Effect of Sigma Phase on Mechanical and Failure Behavior of Duplex Stainless Steel. Metall Mater Trans A 52, 1293–1313 (2021). https://doi.org/10.1007/s11661-021-06163-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06163-2

Navigation