Skip to main content
Log in

Deep Insights into the Twinning Mechanism in High-Performance Al Alloys: A Comprehensive First-Principles Study

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The twinning mechanism of Al solid solutions is comprehensively investigated via the first-principles method. The relative stability of C and H atoms at tetrahedral and octahedral centers is discussed. Moreover, the interaction energies between solute atoms at different atomic layers and generalized stacking-fault structures are calculated. Results indicate that the stable occupation of C atom exists at the octahedral center rather than at the tetrahedral center. By contrast, the H atom stably exists at the tetrahedral center rather than at the octahedral center. Both atoms can effectively reduce the minimum energy barrier of dislocation nucleation, thereby promoting dislocation nucleation. The C atom more easily promotes dislocation nucleation than the H atom. Furthermore, both atoms are repelled by the stacking-fault plane. However, they are more likely to be segregated in the second neighboring layer of unstable stacking fault, intrinsic stacking fault (ISF), and unstable twinning fault (UTF) structures. Charge density measurements reveal that the twinning process is likely inhibited because of the strong local chemical bonding around the UTF layer from the ISF structure to the UTF structure. High concentrations of both atoms inhibit the twinning deformation at crack tips and grain boundaries, but they have almost no effect on the twinning deformation inside the grains. This study provides deep insights into the twinning deformation mechanism of face-centered-cubic alloy systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.D. Rittner, D.N. Seidman, and K.L. Merkle: Phys. Rev. B, 1996, vol. 53, pp. R4241-R44.

    Article  CAS  Google Scholar 

  2. O. Anderoglu, A. Misra, J. Wang, R.G. Hoagland, J.P. Hirth, and X. Zhang: Int. J. Plast., 2010, vol. 26, pp. 875-86.

    Article  CAS  Google Scholar 

  3. J. Wang, O. Anderoglu, J.P. Hirth, A. Misra, and X. Zhang: Appl. Phys. Lett., 2009, vol. 95, pp. 021908.

    Article  Google Scholar 

  4. D.L. Medlin, G.H. Campbell, and C.B. Carter: Acta Mater., 1998, vol. 46, pp. 5135-42.

    Article  CAS  Google Scholar 

  5. T.W. Fan, B.Y. Tang, L.M. Peng, and W.J. Ding: Scripta Mater., 2011, vol. 64, pp. 942-45.

    Article  CAS  Google Scholar 

  6. S.B. Mi and Q.Q. Jin: Scripta Mater., 2013, vol. 68, pp. 635-38.

    Article  CAS  Google Scholar 

  7. K. Hagihara, N. Yokotani, and Y. Umakoshi: Intermetallics, 2010, vol. 18, pp. 267-76.

    Article  CAS  Google Scholar 

  8. Y. Qi and R.K. Mishra: Phys. Rev. B, 2007, vol. 75, pp. 224105.

    Article  Google Scholar 

  9. S. Kibey, J.B. Liu, D.D. Johnson, and H. Sehitoglu: Acta Mater., 2007, vol. 55, pp. 6843-51.

    Article  CAS  Google Scholar 

  10. L.H. Liu, J.H. Chen, T.W. Fan, S.L. Shang, Q.Q. Shao, D.W. Yuan, and Y. Dai: J. Mater. Sci. Technol., 2019, vol. 35, pp. 2625-29.

    Article  Google Scholar 

  11. L.H. Liu, J.H. Chen, T.W. Fan, Z.R. Liu, Y. Zhang, and D.W. Yuan: Comp. Mater. Sci., 2015, vol. 108, pp. 136-46.

    Article  CAS  Google Scholar 

  12. M. Muzyk, Z. Pakiela, and K.J. Kurzydlowski: Scripta Mater., 2011, vol. 64, pp. 916-18.

    Article  CAS  Google Scholar 

  13. J.A. Venables: J. Phys. Chem. Solids, 1964, vol. 25, pp. 693-700.

    Article  CAS  Google Scholar 

  14. M.A. Meyers, D.J. Benson, O. Vöhringer, B.K. Kad, Q. Xue, and H.H. Fu: Mater. Sci. Eng. A, 2002, vol. 322, pp. 194-216.

    Article  Google Scholar 

  15. 15. O. Nishikawa and R.J. Walko: Acta Metall., 1971, vol. 19, pp. 1163-68.

    Article  CAS  Google Scholar 

  16. J.P. Hirth and J. Lothe: Theory of dislocations, 2nd ed., New York, J. Wiley, 1982.

    Google Scholar 

  17. J. Cai, F. Wang, C. Lu, and Y.Y. Wang: Phys. Rev. B, 2004, vol. 69, pp. 1681-85.

    Google Scholar 

  18. N.M. Rosengaard and H.L. Skriver: Phys. Rev. B, 1993, vol. 47, pp. 12865-73.

    Article  CAS  Google Scholar 

  19. V. Vítek: Philos. Mag., 1968, vol. 18, pp. 773-86.

    Article  Google Scholar 

  20. E.B. Tadmor and S. Hai: J. Mech. Phys. Solids, 2003, vol. 51, pp. 765-93.

    Article  CAS  Google Scholar 

  21. H.V. Swygenhoven, P.M. Derlet, and A.G. Frøseth: Nat. Mater., 2004, vol. 3, pp. 399-403.

    Article  Google Scholar 

  22. E.B. Tadmor and N. Bernstein: J. Mech. Phys. Solids, 2004, vol. 52, pp. 2507-19.

    Article  CAS  Google Scholar 

  23. N. Bernstein and E.B. Tadmor: Phys. Rev. B, 2004, vol. 69, pp. 094116.

    Article  Google Scholar 

  24. R.J. Asaro and S. Suresh: Acta Mater., 2005, vol. 53, pp. 3369-82.

    Article  CAS  Google Scholar 

  25. B.Q. Li, M.L. Sui, and S.X. Mao: J. Mater. Sci. Technol., 2011, vol. 27, pp. 97-100.

    Article  Google Scholar 

  26. G.P.M. Leyson, W.A. Curtin, L.G. Hector Jr, and C.F. Woodward: Nat. Mater., 2010, vol. 9, pp. 750-55.

    Article  CAS  Google Scholar 

  27. A.A. El-Aty, Y. Xu, X.Z. Guo, S.H. Zhang, Y. Ma, and D.Y. Chen: J. Adv. Res., 2018, vol. 10, pp. 49-67.

    Article  Google Scholar 

  28. I. Matsui, S. Ono, Y. Hanaoka, T. Uesugi, Y. Takigawa, and K. Higashi: Philos. Mag. Lett., 2014, vol. 94, pp. 63-71.

    Article  CAS  Google Scholar 

  29. N. Masahashi, T. Takasugi, and O. Izumi: Acta Metall., 1988, vol. 36, pp. 1823-36.

    Article  CAS  Google Scholar 

  30. R.G. Song, W. Dietzel, B.J. Zhang, W.J. Liu, M.K. Tseng, and A. Atrens: Acta Mater., 2004, vol. 52, pp. 4727-43.

    Article  CAS  Google Scholar 

  31. P.V. Petroyiannis, A.T. Kermanidis, P. Papanikos, and S.G. Pantelakis: Theor. Appl. Fract. Mech., 2004, vol. 41, pp. 173-83.

    Article  CAS  Google Scholar 

  32. N. Takano: Mater. Sci. Eng. A, 2008, vol. 483-484, pp. 336-39.

    Article  Google Scholar 

  33. E. Pouillier, A.F. Gourgues, D. Tanguy, and E.P. Busso: Int. J. Plast., 2012, vol. 34, pp. 139-53.

    Article  CAS  Google Scholar 

  34. R.J. Zamora, A.K. Nair, R.G. Hennig, and D.H. Warner: Phys. Rev. B, 2012, vol. 86, pp. 060101(R).

    Article  Google Scholar 

  35. G. Lu, D. Orlikowski, I. Park, O. Politano, and E. Kaxiras: Phys. Rev. B, 2002, vol. 65, pp. 064102.

    Article  Google Scholar 

  36. N.I. Medvedeva, M.S. Park, D.C. Van Aken, and J.E. Medvedeva: J. Alloys Compd., 2014, vol. 582, pp. 475-82.

    Article  CAS  Google Scholar 

  37. L.H. Liu, T.W. Fan, C.L. Wu, P. Xie, D.W. Yuan, and J.H. Chen: Acta Metall. Sin. 2017, vol. 30, pp. 272-79.

    Article  CAS  Google Scholar 

  38. D.D. Zhao, O.M. Løvvik, K. Marthinsen, and Y.J. Li: J. Mater. Sci., 2016, vol. 51, pp. 6552-68.

    Article  CAS  Google Scholar 

  39. J.R. Rice: J. Mech. Phys. Solids, 1992, vol. 40, pp. 239-71.

    Article  CAS  Google Scholar 

  40. T.W. Fan, L.T. Wei, B.Y. Tang, L.M. Peng, and W.J. Ding: Philos. Mag., 2014, vol. 94, pp. 1578-87.

    Article  CAS  Google Scholar 

  41. Z.P. Wang, D.C. Chen, Q.H. Fang, H. Chen, T.W. Fan, B. Liu, F. Liu, and P.Y. Tang: Appl. Surf. Sci., 2019, vol. 479, pp. 499-505.

    Article  CAS  Google Scholar 

  42. G. Kresse and J. Hafner: Phys. Rev. B, 1993, vol. 47, pp. 558-61.

    Article  CAS  Google Scholar 

  43. G. Kresse and J. Furthmüller: Phys. Rev. B, 1996, vol. 54, pp. 11169-86.

    Article  CAS  Google Scholar 

  44. P.E. Blöchl: Phys. Rev. B, 1994, vol. 50, pp. 17953-79.

    Article  Google Scholar 

  45. J.P. Perdew, K. Burke, and M. Ernzerhof: Phys. Rev. Lett., 1996, vol. 77, pp. 3865-68.

    Article  CAS  Google Scholar 

  46. H.J. Monkhorst and J.D. Pack: Phys. Rev. B, 1976, vol. 13, pp. 5188-92.

    Article  Google Scholar 

  47. C.A. Zeng, J.P. Hu, and C.Y. Ouyang: J. Alloys Compd., 2011, vol. 509, pp. 9214-17.

    Article  CAS  Google Scholar 

  48. X.Z. Wu, L.L. Liu, R. Wang, and Q. Liu: Chinese Phys. B, 2014, vol. 23, pp. 066104.

    Article  Google Scholar 

  49. L.L. Liu, R. Wang, X.Z. Wu, L.Y. Gan, and Q.Y. Wei: Comp. Mater. Sci., 2014, vol. 88, pp. 124-30.

    Article  CAS  Google Scholar 

  50. S.L. Shang, W.Y. Wang, Y. Wang, Y. Du, J.X. Zhang, A.D. Patel, and Z.K. Liu: J. Phys.: Condens. Mat., 2012, vol. 24, pp. 155402.

    CAS  Google Scholar 

  51. S.L. Shang, C.L. Zacherl, H.Z. Fang, Y. Wang, Y. Du, and Z.K. Liu: J. Phys.: Condens. Mat., 2012, vol. 24, pp. 505403.

    CAS  Google Scholar 

  52. S. Crampin, K. Hampel, D.D. Vvedensky, and J.M. MacLaren: J. Mater. Res., 1990, vol. 5, pp. 2107-19.

    Article  CAS  Google Scholar 

  53. M. Jahnátek, J. Hafner, and M. Krajčí: Phys. Rev. B, 2009, vol. 79, pp. 224103.

    Article  Google Scholar 

  54. A. Datta, A. Srirangarajan, U.V. Waghmare, U. Ramamurty, and A.C. To: Comp. Mater. Sci., 2011, vol. 50, pp. 3342-45.

    Article  CAS  Google Scholar 

  55. C. Woodward, D.R. Trinkle, L.G. Hector Jr., and D.L. Olmsted: Phys. Rev. Lett., 2008, vol. 100, pp. 045507.

    Article  CAS  Google Scholar 

  56. P.J.H. Denteneer and J.M. Soler: J. Phys.: Condens. Mat., 1991, vol. 3, pp. 8777-92.

    CAS  Google Scholar 

  57. X.Y. Liu, F. Ercolessi, and J.B. Adams: Modell. Simul. Mater. Sci. Eng., 2004, vol. 12, pp. 665-70.

    Article  CAS  Google Scholar 

  58. R.E. Smallman and P.S. Dobson: Metall. Trans., 1970, vol. 1, pp. 2383-89.

    Article  Google Scholar 

  59. M.J. Mills and P. Stadelmann: Philos. Mag. A, 1989, vol. 60, pp. 355-84.

    Article  CAS  Google Scholar 

  60. Z.H. Jin, S.T. Dunham, H. Gleiter, H. Hahn, and P. Gumbsch: Scripta Mater., 2011, vol. 64, pp. 605-08.

    Article  CAS  Google Scholar 

  61. A. Hunter and I.J. Beyerlein: Acta Mater., 2015, vol. 88, pp. 207-17.

    Article  CAS  Google Scholar 

  62. J. Hartford, B.V. Sydow, G. Wahnström, and B.I. Lundqvist: Phys. Rev. B, 1998, vol. 58, pp. 2487-96.

    Article  CAS  Google Scholar 

  63. D. Finkenstadt and D.D. Johnson: Phys. Rev. B, 2006, vol. 73, pp. 024101.

    Article  Google Scholar 

  64. I.L. Dillamore and R.E. Smallman: Philos. Mag., 1965, vol. 12, pp. 191-93.

    Article  CAS  Google Scholar 

  65. A. Abbasi, A. Dick, T. Hickel, and J. Neugebauer: Acta Mater., 2011, vol. 59, pp. 3041-48.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to deeply appreciate the support from the National Natural Science Foundation of China (11572118 and 11772122), the Hunan Provincial Science Fund for Distinguished Young Scholars (2015JJ1006), the National Key Research and Development Program of China (2016YFB0700300), the Research and Development plan for key areas in Guangdong Province (2020B010186001), the Foshan University Scientific Research Project (CGG07257, CGG07026, BGH206017 and BGH206025), and the project supported by State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China. This work was implemented in the National Supercomputer Centers in Changsha, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhipeng Wang or Qihong Fang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript received June 16, 2020; accepted December 14, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, T., Liu, F., Wang, Z. et al. Deep Insights into the Twinning Mechanism in High-Performance Al Alloys: A Comprehensive First-Principles Study. Metall Mater Trans A 52, 955–963 (2021). https://doi.org/10.1007/s11661-020-06134-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-06134-z

Navigation