Skip to main content

Advertisement

Log in

Microstructure, Properties, and Metallurgical Defects of an Equimolar CoCrNi Medium Entropy Alloy Additively Manufactured by Selective Laser Melting

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Additive manufacturing of an equimolar CoCrNi medium entropy alloy (MEA) by selective laser melting (SLM) was investigated, emphasizing its microstructure, properties, and metallurgical defects. It was found that SLM sample density exhibited a non-monotonic relation with their volume energy density (VED); the density first increased but then decreased while the input VED was gradually increasing. A maximal relative density of 98.9 pct was accessible at a VED of 83.3 J/mm3. X-ray diffraction indicated that the printed CoCrNi MEA exhibited an FCC single-crystal structure where the lattice constant decreased with the increasing VED owing to the evaporation of the Cr element in the SLM process. The average grain size gradually increased with increasing VED, irrespective of whether viewed from the top or the side of the printed part. Similarly, the residual stress increased with increasing VED, which produced more microcracks and deteriorated the tensile preformation of the printed samples, although the yield strength (630 MPa) showed no apparent difference at different VEDs. Owing to the ultrafine cell structure, the mechanical property of the SLM printed sample was twice that of cast or wrought CoCrNi MEA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. [1] Y.F. Ye, Q. Wang, J. Lu, C.T. Liu and Y. Yang: Mater Today, 2016, vol. 19, pp. 349-62.

    Article  CAS  Google Scholar 

  2. [2] Z. Li, F. Kormann, B. Grabowski, J. Neugebauer and D. Raabe: Acta Mater., 2017, vol. 136, pp. 262-70.

    Article  CAS  Google Scholar 

  3. [3] Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw and Z.P. Lu: Prog. Mater. Sci., 2014, vol. 61, pp. 1-93.

    Article  Google Scholar 

  4. [4] C.P. Lee, C.C. Chang, Y.Y. Chen, J.W. Yeh and H.C. Shih: Corros. Sci., 2008, vol. 50, pp. 2053-60.

    Article  CAS  Google Scholar 

  5. [5] G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler and E.P. George: Acta Mater., 2017, vol. 128, pp. 292-303.

    Article  CAS  Google Scholar 

  6. [6] S. Yoshida, T. Bhattacharjee, Y. Bai and N. Tsuji: Scripta Mater., 2017, vol. 134, pp. 33-36.

    Article  CAS  Google Scholar 

  7. [7] Y.L. Zhao, T. Yang, Y. Tong, J. Wang, J.H. Luan, Z.B. Jiao, D. Chen, Y. Yang, A. Hu, C.T. Liu and J.J. Kai: Acta Mater., 2017, vol. 138, pp. 72-82.

    Article  CAS  Google Scholar 

  8. [8] J. Miao, C.E. Slone, T.M. Smith, C. Niu, H. Bei, M. Ghazisaeidi, G.M. Pharr and M.J. Mills: Acta Mater., 2017, vol. 132, pp. 35-48.

    Article  CAS  Google Scholar 

  9. [9] M.J. Jang, S. Praveen, H.J. Sung, J.W. Bae, J. Moon and H.S. Kim: J. Alloy. Compd, 2018, vol. 730, pp. 242-48.

    Article  CAS  Google Scholar 

  10. [10] T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De and W. Zhang: Prog. Mater. Sci., 2018, vol. 92, pp. 112-224.

    Article  CAS  Google Scholar 

  11. [11] Y.J Zhang, B. Song, X. Zhang and Y.S. Shi: Nano. Mater. Sci., 2019, vol. 1, pp. 208-214.

    Article  Google Scholar 

  12. [12] H. Rao, S. Giet, K. Yang, X. Wu and C.H.J. Davies: Mater. Design, 2016, vol. 109, pp. 334-46.

    Article  CAS  Google Scholar 

  13. [13] Y. Li, K. Zhou, P. Tan, S.B. Tor, C.K. Chua and K.F. Leong: Int. J. Mech. Sci., 2018, vol. 136, pp. 24-35.

    Article  Google Scholar 

  14. [14] X.P. Li, X.J. Wang, M. Saunders, A. Suvorova, L.C. Zhang, Y.J. Liu, M.H. Fang, Z.H. Huang and T.B. Sercombe: Acta Mater., 2015, vol. 95, pp. 74-82.

    Article  CAS  Google Scholar 

  15. [15] R. Li, M. Wang, T. Yuan, B. Song, C. Chen, K. Zhou and P. Cao: Powder Technol., 2017, vol. 319, pp. 117-28.

    Article  CAS  Google Scholar 

  16. [16] L.B. Li, R.D. Li, T.C. Yuan, C. Chen, Z.J. Zhang and X.F. Li: Mat. Sci. Eng. A.-Struct., 2020, vol. 787, pp. 139492.

    Article  CAS  Google Scholar 

  17. [17] B. Song, Z. Wang, Q. Yan, Y. Zhang, J. Zhang, C. Cai, Q. Wei and Y. Shi: Mat. Sci. Eng. A.-Struct., 2017, vol. 707, pp. 478-87.

    Article  CAS  Google Scholar 

  18. [18] R. Li, Y. Shi, Z. Wang, L. Wang, J. Liu and W. Jiang: Appl. Surf. Sci., 2010, vol. 256, pp. 4350-56.

    Article  CAS  Google Scholar 

  19. [19] H. Azizi, H. Zurob, B. Bose, S.R. Ghiaasiaan, X. Wang, S. Coulson, V. Duz and A.B. Phillion: Addit. Manuf, 2018, vol. 21, pp. 529-35.

    CAS  Google Scholar 

  20. [20] E. Tiferet, O. Rivin, M. Ganor, H. Ettedgui, O. Ozeri, E.N. Caspi and O. Yeheskel: Addit. Manuf, 2016, vol. 10, pp. 43-46.

    CAS  Google Scholar 

  21. [21] Y. Zhang, J. Zhang, Q. Yan, L. Zhang, M. Wang, B. Song and Y. Shi: Scripta Mater., 2018, vol. 148, pp. 20-23.

    Article  CAS  Google Scholar 

  22. [22] D. Ouyang, W. Xing, N. Li, Y. Li and L. Liu: Addit. Manuf, 2018, vol. 23, pp. 246-52.

    CAS  Google Scholar 

  23. [23] Y. Brif, M. Thomas and I. Todd: Scripta Mater., 2015, vol. 99, pp. 93-96.

    Article  CAS  Google Scholar 

  24. [24] J. Joseph, N. Stanford, P. Hodgson and D.M. Fabijanic: Scripta Mater., 2017, vol. 129, pp. 30-34.

    Article  CAS  Google Scholar 

  25. [25] J. Joseph, P. Hodgson, T. Jarvis, X. Wu, N. Stanford and D.M. Fabijanic: Materials Science and Engineering: A, 2018, vol. 733, pp. 59-70.

    Article  CAS  Google Scholar 

  26. [26] R. Li, P. Niu, T. Yuan, P. Cao, C. Chen and K. Zhou: J. Alloy. Compd, 2018, vol. 746, pp. 125-34.

    Article  CAS  Google Scholar 

  27. [27] Z. Xu, H. Zhang, W. Li, A. Mao, L. Wang, G. Song and Y. He: Addit. Manuf, 2019, vol. 28, pp. 766-71.

    CAS  Google Scholar 

  28. [28] J. Guo, M. Goh, Z. Zhu, X. Lee, M.L.S. Nai and J. Wei: Mater. Design, 2018, vol. 153, pp. 211-20.

    Article  CAS  Google Scholar 

  29. [29] Z. Tong, X. Ren, J. Jiao, W. Zhou, Y. Ren, Y. Ye, E.A. Larson and J. Gu: J. Alloy. Compd, 2019, vol. 785, pp. 1144-59.

    Article  CAS  Google Scholar 

  30. [30] P.D. Niu, R.D. Li, T.C. Yuan, S.Y. Zhu, C. Chen, M.B. Wang and L. Huang: Intermetallics, 2019, vol. 104, pp. 24-32.

    Article  CAS  Google Scholar 

  31. [31] S. Luo, P. Gao, H. Yu, J. Yang, Z. Wang and X. Zeng: J. Alloy. Compd, 2019, vol. 771, pp. 387-97.

    Article  CAS  Google Scholar 

  32. [32] M. Zhang, X. Zhou, D. Wang, W. Zhu, J. Li and Y.F. Zhao: Mat. Sci. Eng. A.-Struct., 2019, vol. 743, pp. 773-84.

    Article  CAS  Google Scholar 

  33. [33] T. Fujieda, M. Chen, H. Shiratori, K. Kuwabara, K. Yamanaka, Y. Koizumi, A. Chiba and S. Watanabe: Addit. Manuf, 2019, vol. 25, pp. 412-20.

    CAS  Google Scholar 

  34. [34] D. Gu, Y. Hagedorn, W. Meiners, G. Meng, R.J.S. Batista, K. Wissenbach and R. Poprawe: Acta Mater., 2012, vol. 60, pp. 3849-60.

    Article  CAS  Google Scholar 

  35. [35] K.G. Prashanth, S. Scudino, T. Maity, J. Das and J. Eckert: Mater Res Lett, 2017, vol. 5, pp. 386-90.

    Article  CAS  Google Scholar 

  36. [36] M.J. Matthews, G. Guss, S.A. Khairallah, A.M. Rubenchik, P.J. Depond and W.E. King: Acta Mater., 2016, vol. 114, pp. 33-42.

    Article  CAS  Google Scholar 

  37. [37] R. Hu, S. Pang, X. Chen, L. Liang and X. Shao: Int. J. Heat Mass Tran., 2017, vol. 115, pp. 258-63.

    Article  Google Scholar 

  38. [38] Z.G. Zhu, Q.B. Nguyen, F.L. Ng, X.H. An, X.Z. Liao, P.K. Liaw, S.M.L. Nai and J. Wei: Scripta Mater., 2018, vol. 154, pp. 20-24.

    Article  CAS  Google Scholar 

  39. [39] P. Nie, O.A. Ojo and Z. Li: Acta Mater., 2014, vol. 77, pp. 85-95.

    Article  CAS  Google Scholar 

  40. [40] S.S. Al-Bermani, M.L. Blackmore, W. Zhang and I. Todd: Metall. Mater. Trans. A., 2010, vol. 41A, pp. 3422-34.

    Article  Google Scholar 

  41. [41] J. Wang, H. Yang, H. Huang, J. Ruan and S. Ji: Mater. Lett., 2019, vol. 254, pp. 77-80.

    Article  CAS  Google Scholar 

  42. [42] R. Chang, W. Fang, X. Bai, C. Xia, X. Zhang, H. Yu, B. Liu and F. Yin: J. Alloy. Compd, 2019, vol. 790, pp. 732-43.

    Article  CAS  Google Scholar 

  43. [44] M. Gaumann, C. Bezencon, P. Canalis and W. Kurz: Acta Mater., 2001, vol. 49, pp. 1051-62.

    Article  CAS  Google Scholar 

  44. [45] S. Tammas-Williams, H. Zhao, F. Leonard, F. Derguti, I. Todd and P.B. Prangnell: Mater. Charact., 2015, vol. 102, pp. 47-61.

    Article  CAS  Google Scholar 

  45. [46] S. Praveen, J.W. Bae, P. Asghari-Rad, J.M. Park and H.S. Kim: Mat. Sci. Eng. A.-Struct., 2018, vol. 735, pp. 394-97.

    Article  CAS  Google Scholar 

  46. [48] M.P. Agustianingrum, S. Yoshida, N. Tsuji and N. Park: J. Alloy. Compd, 2019, vol. 781, pp. 866-72.

    Article  CAS  Google Scholar 

  47. [49] J. Wang, H. Yang, H. Huang, J. Ruan and S. Ji: J. Alloy. Compd, 2019, vol. 798, pp. 576-86.

    Article  CAS  Google Scholar 

  48. [50] Z. Wu, H. Bei, G.M. Pharr and E.P. George: Acta Mater. 2014, vol. 81, pp. 428-441.

    Article  CAS  Google Scholar 

  49. S. Guan, D. Wan, K. Solberg, F. Berto, T. Welo, T.M. Yue and K.C. Chan: Mat. Sci. Eng. A, 2019, vol. 761, pp.

  50. [54] M. Zaiser and E.C. Aifantis: Scripta Mater., 2003, vol. 48, pp. 133-39.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the National Natural Science Foundation of China (No. 51871249), financial support of the National Key R&D Program of China (No. 2016YFB1100101), Science and Technology Planning Project of Changsha (No. kq1801068), Huxiang Young Talents (No. 2018RS3007), Science Project of Shenzhen (No. JCYJ20180508151903646), and Science Project of Guangxi (No. GuikeAB19050002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruidi Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted March 15, 2020; accepted December 3, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, P., Li, R., Gan, K. et al. Microstructure, Properties, and Metallurgical Defects of an Equimolar CoCrNi Medium Entropy Alloy Additively Manufactured by Selective Laser Melting. Metall Mater Trans A 52, 753–766 (2021). https://doi.org/10.1007/s11661-020-06121-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-06121-4

Navigation