Abstract
Additive manufacturing enables the fabrication of complex engineering components previously inaccessible through traditional processes. Nickel-base superalloys with large \(\gamma^{\prime}\) volume fraction are typically considered non-weldable and therefore exhibit a propensity for cracking during the fusion process. These crack-prone materials, however, are of great importance in gas turbine engines due to their excellent high temperature creep resistance. In this study we investigate the creep behavior of IN738LC produced by the electron beam melting process. We find that with appropriate post-build heat treatment the creep response of material oriented in the build direction exhibits deformation and rupture behavior comparable to that of conventionally cast IN738 & IN738LC. In the transverse direction properties fall below the expected cast behavior, however, we argue this is likely due to differences in grain scale and crystallographic texture. It may be possible to coarsen the grain morphology with appropriate process-parameter optimization in order to reduce the severity of intergranular fracture in the transverse direction. These results illustrate that high temperature properties exhibited by additively manufactured IN738LC are suitable for the hot section of gas turbine engines.
Similar content being viewed by others
References
R.C. Reed, The Superalloys: Fundamentals and Applications, Cambridge University Press, Cambridge, 2008.
C.T. Sims: Superalloys, TMS, Warrendale, PA, 1984, pp. 399–419
F. VerSnyder: in Proceedings of a Conference held in Liege, 1982.
R. Brunetaud, D. Coutsouradis, T. Gibbons, Y. Lindblom, D. Meadowcroft, and R. Stickler: in Proceedings of a Conference held in Liege, 1982.
W. Betteridge, S. Shaw, Mater. Sci. Technol., 1987, vol. 39, 682–94
F.I. Versnyder, M. Shank, Mater. Sci. Eng., 1970, vol. 64, 213–47
B. Piearcey, F. VerSnyder, J. Aircraft, 1966, vol. 35, 390–97
S.F.L. Ver: Gas turbine element, US Patent 3,260,505, 1966.
L. Mataveli Suave, J. Cormier, P. Villechaise, D. Bertheau, G. Benoit, G. Cailletaud, and L. Marcin: Mater. High Temp., vol. 334–345, 361–71, 2016.
J. Lacaze and A. Hazotte: Text. Microstruct., 1970, vol. 13, art. no. 601079.
T. Pollock, A. Argon, Acta Metall. Mater., 1992, vol. 401, 1–30
M. Nathal, L. Ebert, Metall. Trans. A, 1985, vol. 1610, 1863–70
T. Murakumo, T. Kobayashi, Y. Koizumi, H. Harada, Acta Mater., 2004, vol. 5212, 3737–44
A. Giamei, D. Anton, Metall. Trans. A, 1985, vol. 1611, 1997–2005
P. Caron, T. Khan, Mater. Sci. Eng., 1983, vol. 612, 173–84
R.R. Dehoff, M. Kirka, W. Sames, H. Bilheux, A. Tremsin, L. Lowe, S. Babu, Mater. Sci. Technol., 2015, vol. 318, 931–38
N. Raghavan, R. Dehoff, S. Pannala, S. Simunovic, M. Kirka, J. Turner, N. Carlson, S.S. Babu, Acta Mater., 2016, vol. 112, 303–314
N. Raghavan, S. Simunovic, R. Dehoff, A. Plotkowski, J. Turner, M. Kirka, S. Babu, Acta Mater., 2017, vol. 140, 375–87
G. Dinda, A. Dasgupta, J. Mazumder, Scr. Mater., 2012, vol. 675, 503–06
H. Wei, J. Mazumder, T. DebRoy, Sci. Rep., 2015, vol. 5, 16446
L.L. Parimi, G. Ravi, D. Clark, M.M. Attallah, Mater. Charact., 2014, vol. 89, 102–111
C. Körner, M. Ramsperger, C. Meid, D. Bürger, P. Wollgramm, M. Bartsch, G. Eggeler, Metall. Mater. Trans. A, 2018, vol. 499A, 3781–92
M. Ramsperger, R.F. Singer, and C. Körner: Metall. Mater. Trans. A, 2016, vol. 473A, 1469–80.
E. Chauvet, C. Tassin, J.J. Blandin, R. Dendievel, G. Martin, Scr. Mater., 2018, vol. 152, 15–19
F. Geiger, K. Kunze, T. Etter, Mater. Sci. Eng. A, 2016, vol. 661, 240–46
V. Popovich, E. Borisov, V.S. Sufiyarov, A. Popovich, Met. Sci. Heat Treat., 2019, vol. 6011-6012, 701–09
L. Thijs, M.L.M. Sistiaga, R. Wauthle, Q. Xie, J.P. Kruth, J. Van Humbeeck, Acta Mater., 2013, vol. 6112, 4657–68
K. Kunze, T. Etter, J. Grässlin, V. Shklover, Mater. Sci. Eng. A, 2015, vol. 620, 213–22
T. Etter, K. Kunze, F. Geiger, and H. Meidani: in IOP Conference Series: Materials Science and Engineering, vol. 82, p. 012097, IOP Publishing, Bristol, 2015.
M.L. Montero-Sistiaga, S. Pourbabak, J. Van Humbeeck, D. Schryvers, K. Vanmeensel, Mater. Des., 2019, vol. 165, 107598
W.J. Sames, F. List, S. Pannala, R.R. Dehoff, S.S. Babu, Int. Mater. Rev., 2016, vol. 615, 315–60
R.F. Decker, Metall. Trans., 1973, vol. 411, 2495–518
V. Mohles, D. Rönnpagel, E. Nembach, Comput. Mater. Sci., 1999, vol. 161-4, 144–50
L.N. Carter, M.M. Attallah, R.C. Reed, Superalloys, 2012, vol. 2012, 577–86
M. Henderson, D. Arrell, R. Larsson, M. Heobel, G. Marchant, Sci. Technol. Weld. Join., 2004, vol. 91, 13–21
M.J. Donachie and S.J. Donachie: Superalloys: A Technical Guide, ASM International, Materials Park, 2002.
J. Yang, F. Li, Z. Wang, X. Zeng, J. Mater. Process. Technol., 2015, vol. 225, 229–39
R. Engeli, T. Etter, S. Hoevel, K. Wegener, J. Mater. Process. Technol., 2016, vol. 229, 484–91
S. Asavavisithchai, W. Homkrajai, P. Wangyao, High Temp. Mater. Processes, 2010, vol. 291-2, 61–68
O. Ojo, N. Richards, M. Chaturvedi, Scr. Mater., 2004, vol. 505, 641–46
R. Reed, N. Matan, D. Cox, M. Rist, C. Rae, Acta Mater., 1999, vol. 4712, 3367–81
R. Stevens, P. Flewitt, Mater. Sci. Eng., 1979, vol. 373, 237–47
R. Stevens, P. Flewitt, Acta Metall., 1981, vol. 295, 867–82
D. Woodford, J. Frawley, Metall. Trans., 1974, vol. 59, 2005–2013
R. Mishra, S. Singh, A. Sriramamurthy, M. Pandey, Mater. Sci. Technol., 1995, vol. 114, 341–46
L. Rickenbacher, T. Etter, S. Hövel, K. Wegener, Rapid Prototyping J., 2013, vol. 194, 282–90
J. Xu, H. Gruber, D. Deng, R.L. Peng, J.J. Moverare, Acta Mater., 2019, vol. 179, 142–57
Y.T. Tang, A.J. Wilkinson, R.C. Reed, Metall. Mater. Trans. A, 2018, vol. 499, 4324–42
J. Risse, C. Broeckmann, Additive manufacturing of nickel-base superalloy in738lc by laser powder bed fusion. Tech. Rep., Lehrstuhl für Lasertechnik, 2019
M. Pröbstle, S. Neumeier, J. Hopfenmüller, L. Freund, T. Niendorf, D. Schwarze, M. Göken, Mater. Sci. Eng. A, 2016, vol. 674, 299–307
L. Thébaud, P. Villechaise, C. Crozet, A. Devaux, D. Béchet, J.M. Franchet, A.L. Rouffié, M. Mills, J. Cormier, Mater. Sci. Eng. A, 2018, vol. 716, 274–83
B. Shassere, D. Greeley, A. Okello, M. Kirka, P. Nandwana, R. Dehoff, Metall. Mater. Trans. A, 2018, vol. 4910A, 5107–117
Y.L. Kuo, S. Horikawa, K. Kakehi, Scr. Mater., 2017, vol. 129, 74–78
Y.L. Kuo, T. Nagahari, K. Kakehi, Materials, 2018, vol. 116, 996
W. Sames: Additive manufacturing of inconel 718 using electron beam melting: processing, post-processing, & mechanical properties, Ph.D. thesis, Texas A & M, 2015.
O. Messé, R. Muñoz-Moreno, T. Illston, S. Baker, H. Stone, Addit. Manuf., 2018, vol. 22, 394–404
G. Jiangting, D. Ranucci, E. Picco, Superalloys 1984, 1984, pp. 689–98
R. Castillo, A. Koul, and J. Immarigeom: in: Superalloys 1988, The Metallurgical Society, 1988.
National Institute for Materials Science: in: NIMS Creep Data Sheet, NIMS, Tsukuba, 2007.
The International Nickel Company, Inc.: Alloy IN-738 Technical Data, The International Nickel Company Inc, New York, 1981.
A. Koul, J. Immarigeon, R. Castillo, P. Lowden, and J. Liburdi, in Proceedings of Superalloys 1988 (Sixth International Symposium), pp. 755–764, 1988.
A. Ibanez, V. Srinivasan, A. Saxena, Fatigue Fract. Eng. Mater. Struct., 2006, vol. 2912, 1010–20
G. Jianting, D. Ranucci, E. Picco, Mater. Sci. Eng., 1983, vol. 581, 127–33
F. Bachmann, R. Hielscher, and H. Schaeben, in Solid State Phenomenon, vol. 160, pp. 63–68, Trans Tech Publ, 2010.
M.I. Latypov, M. Kühbach, I.J. Beyerlein, J.C. Stinville, L.S. Toth, T.M. Pollock, S.R. Kalidindi, Mater. Charact., 2018, vol. 145, 671–85
D.M. Turner, S.R. Niezgoda, S.R. Kalidindi, Model. Simul. Mater. Sci. Eng., 2016, vol. 247, 075002
P. Fernandez-Zelaia, S.N. Melkote, J. Mater. Process. Technol., 2019, vol. 273, 116251
OpenCV: Open Source Computer Vision Library, 2015.
K.A. Unocic, D. Shin, X. Sang, E. Cakmak, P.F. Tortorelli, Scr. Mater., 2019, vol. 162, 416–20
L. Liu, F. Sommer, and H. Fu: Scr. Metall. Mater. (U.S.), vol. 30, 587–591, 1994.
F. Furillo, J. Davidson, J. Tien, L. Jackman, Mater. Sci. Eng., 1979, vol. 392, 267–73
R. Oruganti, M. Karadge, S. Nalawade, S. Kelekanjeri, F. Mastromatteo, Superalloys 2012, 2012, pp. 473–79
F.C. Monkman and N. Grant: in Proceedings of ASTM, vol. 56, pp. 91–103, 1956
P. Caron, T. Khan, Y. Ohta, Y. Nakagawa, Superalloys 1988, pp. 215–24 (1988)
R. Coble, J. Appl. Phys., 1963, vol. 346, 1679–82
A.T. Polonsky, M.P. Echlin, W.C. Lenthe, R.R. Dehoff, M.M. Kirka, T.M. Pollock, Mater. Charact., 2018, vol. 143, 171–81
C.S. Kim, C.Y. Hyun, K.Y. Jhang, Int. J. Mod. Phys. B, 2011, vol. 2510, 1385–92
M. Kirka, K. Brindley, R. Neu, S. Antolovich, S. Shinde, P. Gravett, Int. J. Fatigue, 2015, vol. 81, 191–201
M. Kirka, K. Brindley, R. Neu, S. Antolovich, S. Shinde, P. Gravett, Int. J. Fatigue, 2015, vol. 81, 48–60
F.R. Nabarro, Metall. Mater. Trans. A, 1996, vol. 273, 513–30
O. Paris, M. Fa, E. Fa, T. Pollock, P. Fratzl, et al., Acta Mater., 1997, vol. 453, 1085–97
N. Matan, D. Cox, C. Rae, R. Reed, Acta Mater., 1999, vol. 477, 2031–45
R. MacKay, M. Nathal, Acta Metall. Mater., 1990, vol. 386, 993–1005
A. Epishin, T. Link, H. Klingelhöffer, B. Fedelich, P. Portella, Mater. High Temp., 2010, vol. 271, 53–59
A. Brailsford, P. Wynblatt, Acta Metall., 1979, vol. 273, 489–97
H. Huang, G. Liu, H. Wang, A. Ullah, B. Hu, Metall. Mater. Trans. A, 2020, vol. 513A, 1075–84
I.M. Lifshitz, V.V. Slyozov, J. Phys. Chem. Solids, 1961, vol. 191-192, 35–50
Acknowledgments
Research was sponsored by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office, and Office of Fossil Energy, Crosscutting Research Program, under contract DE-AC05-00OR22725 with UT-Battelle LLC and performed in partiality at the Oak Ridge National Laboratorys Manufacturing Demonstration Facility, an Office of Energy Efficiency and Renewable Energy user facility.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).
Manuscript submitted March 5, 2020; accepted October 30, 2020.
Rights and permissions
About this article
Cite this article
Fernandez-Zelaia, P., Acevedo, O.D., Kirka, M.M. et al. Creep Behavior of a High-\(\gamma^{\prime}\) Ni-Based Superalloy Fabricated via Electron Beam Melting. Metall Mater Trans A 52, 574–590 (2021). https://doi.org/10.1007/s11661-020-06095-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11661-020-06095-3