Skip to main content
Log in

Numerical Investigation on Molten Pool Dynamics During Multi-laser Array Powder Bed Fusion Process

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Multi-laser powder bed fusion (MLPBF) has become the most promising technology for rapid manufacturing of large metal parts. As a branch of MLPBF, multi-laser array powder bed fusion (MLA-PBF) has gradually attracted the attention of the industry, because of its advantages such as significantly speeding up production efficiency and low technical implementation difficulty. However, there is currently a lack of simulation studies based on the mesoscopic scale to describe the dynamic behavior of the MLA-PBF molten pool. The MLA-PBF spreading powder process was calculated herein based on the open source DEM framework Yade, the MLA-PBF molten pool dynamics was described based on the open source CFD framework OpenFOAM, and a multi-laser heat source model for real-time tracking of changes in the metal-phase and gas-phase interface was proposed. Aiming at the single-line mode of MLA-PBF, it was found that the dual-laser forming with low-front and high-rear could be used to preheat and pre-sinter the metal particles that were about to enter the molten pool, which was beneficial to reduce the pore defect in the solidified track, and a moderate laser beam space should be used. Aiming at the multi-line mode of MLA-PBF, it could form a molten pool with a significantly larger width and length than in the case of a single-laser beam, which was beneficial to eliminate pore defect in the formed zone, obtain a flat solidified track surface, and improve forming efficiency. When the laser power was low or the laser beam space was large, a large number of pores were prone to appear in the formed zone. As the laser power increased or the laser beam space decreased, when the laser energy was sufficient to melt the metal particles located in the lower part of the powder bed, a smooth surface of the solidified track and fewer pore defect would be obtained. This paper is expected to provide theoretical support for deepening the application of MLA-PBF in metal additive manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. A. Salmi, F. Calignano, M. Galati, E. Atzeni: Virtual Phys. Prototy., 2018, vol. 13, no. 3, pp. 191-202.

    Article  Google Scholar 

  2. B. Fotovvati, N. Namdari, A. Dehghanghadikolaei: Mater. Res. Express, 2019, vol. 6, pp. 012002.

    Article  Google Scholar 

  3. A. Khorasani, I. Gibson, J. K. Veetil, A. H. Ghasemi: Int. J. Adv. Manuf. Tech., 2020, vol. 108, pp. 191-209.

    Article  Google Scholar 

  4. T. DebRoy, H. L. Wei, J. S. Zuback, T. Mukherjee, J. W. Elmer, J. O. Milewski, A. M. Beese, A. Wilson-Heid, A. De, W. Zhang: Prog. Mater. Sci., 2018, vol. 92, pp. 112-224.

    Article  CAS  Google Scholar 

  5. P. Wagenblast, J. Risse, S. Schweikert, J. Zaiss: Proceedings of SPIE, 2020, https://doi.org/10.1117/12.2551154.

    Article  Google Scholar 

  6. F. Eibl, C. Tenbrock, T. Pichler, T. Schmithüsen, D. Heussen, J. H. Schleifenbaum: Proceedings of the 2017 High Power Diode Lasers and Systems Conference, 2017, https://doi.org/10.1109/hpd.2017.8261078.

  7. S. F. Wen, C. Z. Yan, Q. S. Wei, L. C. Zhang, X. Zhao, W. Zhu, Y. S. Shi: Virtual Phys. Prototy., 2014, vol. 9, no. 4, pp. 213-23.

    Article  Google Scholar 

  8. A. T. Payne: Doctoral thesis, 2017, England: University of Cambridge.

  9. H. Wong, K. Dawson, G. A. Ravi, L. Howlett, R. O. Jones, C. J. Sutcliffe: Int. J. Adv. Manuf. Tech., 2019, vol. 105, pp. 2891-2906.

    Article  Google Scholar 

  10. J. Karp, V. Ostroverkhov, D. Bogdan, M. Graham, B. McCarthy, W. Carter: Proceedings of SPIE, 2019, https://doi.org/10.1117/12.2513892.

    Article  Google Scholar 

  11. C.-Y. Tsai, C.-W. Cheng, A.-C. Lee, M.-C. Tsai: Addit. Manuf., 2019, vol. 27, pp. 1-7.

    Google Scholar 

  12. B. Liu, Z. Z. Kuai, Z. H. Li, J. B. Tong, P. K. Bai, B. Q. Li, Y. F. Nie: Materials, 2018, vol. 11, pp. 2354.

    Article  CAS  Google Scholar 

  13. F. Z. Li, Z. M. Wang, X. Y. Zeng: Mater. Lett., 2017, vol. 199, pp. 79-83.

    Article  CAS  Google Scholar 

  14. F. Eibl: Doctoral thesis, 2017, Germany: RWTH Aachen University.

  15. S. A. Khairallah, A. T. Anderson, A. Rubenchik, W. E. King: Acta Mater., 2016, vol. 108, pp. 36-45.

    Article  CAS  Google Scholar 

  16. K. Q. Le, C. Tang, C. H. Wong: Int. J. Therm. Sci., 2019, vol. 145, pp. 105992.

    Article  Google Scholar 

  17. L. Cao: Int. J. Adv. Manuf. Tech., 2019, vol. 105, pp. 2253-69.

    Article  Google Scholar 

  18. E. J. R. Parteli, T. Pöschel: Powder Technol., 2016, vol. 288, pp. 96-102.

    Article  CAS  Google Scholar 

  19. D. D. Gu, M. J. Xia, D. H. Dai: Int. J. Mach. Tool. Manu., 2019, vol. 137, pp. 67-78.

    Article  Google Scholar 

  20. L. Cao: Int. J. Heat Mass Tran., 2019, vol. 141, pp. 1036-48.

    Article  Google Scholar 

  21. C. Tang, J. L. Tan, C. H. Wong: Int. J. Heat Mass Tran., 2018, vol. 126, pp. 957-68.

    Article  CAS  Google Scholar 

  22. M. Zheng, L. Wei, J. Chen, Q. Zhang, J. Q. Li, S. Sui, G. Wang, W. D. Huang: Appl. Surf. Sci., 2019, vol. 496, pp. 143649.

    Article  CAS  Google Scholar 

  23. C. Panwisawas, C. L. Qiu, M. J. Anderson, Y. Sovani, R. P. Turner, M. M. Attallah, J. W. Brooks, H. C. Basoalto: Comp. Mater. Sci., 2017, vol. 126, pp. 479-90.

    Article  CAS  Google Scholar 

  24. L. Cao: Metall. Mater. Trans. A, 2020, vol. 51, pp. 4130-45.

    Article  Google Scholar 

  25. L. Cao: Comp. Mater. Sci., 2020, vol. 179, pp. 109686.

    Article  CAS  Google Scholar 

  26. H. Kyogoku, T.-T. Ikeshoji: Mech. Engineering Rev., 2020, vol. 7, no. 1, pp. 19-00182.

  27. M. Zavala-Arredondo, H. Ali, K. M. Groom, K. Mumtaz: Int. J. Adv. Manuf. Tech., 2018, vol. 97, pp. 1383-96.

    Article  Google Scholar 

  28. S. Zou, H. B. Xiao, F. P. Ye, Z. C. Li, W. Z. Tang, F. Zhu, C. T. Chen, C. Zhu: Results Phys., 2020, vol. 16, pp. 103005.

    Article  Google Scholar 

  29. C. P. Chen, Z. X. Xiao, H. H. Zhu, X. Y. Zeng: J. Mater. Process. Tech., 2020, vol. 284, pp. 116726.

    Article  CAS  Google Scholar 

  30. M. Masoomi, S. M. Thompson, N. Shamsaei: Manuf. Lett., 2017, vol. 13, pp. 15-20.

    Article  Google Scholar 

  31. T. Heeling, K. Wegener: Phys. Procedia, 2016, vol. 83, pp. 899-908.

    Article  CAS  Google Scholar 

  32. T. Heeling, L. Zimmermann, K. Wegener: Proceedings of Solid Freeform Fabrication Symposium, 2016, https://doi.org/10.3929/ethz-a-010803938.

    Article  Google Scholar 

  33. L. Cao, D. M. Liao, F. Sun, T. Chen, Z. H. Teng, Y. L. Tang: Int. J. Adv. Manuf. Tech., 2017, vol. 94, pp. 807-15.

    Article  Google Scholar 

  34. L. Cao, F. Sun, T. Chen, Z. H. Teng, Y. L. Tang, D. M. Liao: Acta Metall. Sin., 2017, vol. 53, no. 11, pp. 1521-31.

    CAS  Google Scholar 

  35. S. A. Khairallah, A. A. Martin, J. R. I. Lee, G. Guss, N. P. Calta, J. A. Hammons, M. H. Nielsen, K. Chaput, E. Schwalbach, M. N. Shah, M. G. Chapman, T. M. Willey, A. M. Rubenchik, A. T. Anderson, Y. M. Wang, M. J. Matthews, W. E. King: Science, vol. 368, pp. 660–65.

  36. Q. L. Guo, C. Zhao, L. I. Escano, Z. Young, L. H. Xiong, K. Fezzaa, W. Everhart, B. Brown, T. Sun, L. Y. Chen: Acta Mater., 2018, vol. 151, pp. 169–80.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Guangdong Province (No. 2019A1515012040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Cao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 31, 2020; accepted October 18, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, L. Numerical Investigation on Molten Pool Dynamics During Multi-laser Array Powder Bed Fusion Process. Metall Mater Trans A 52, 211–227 (2021). https://doi.org/10.1007/s11661-020-06076-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-06076-6

Navigation