Skip to main content
Log in

Microstructure and Properties of Fe-2Cr-Mo-0.12C (Wt Pct)-Tempered Steel Plate at Different Normalizing Temperature After Hot Rolling

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The microstructure and properties of a Fe-2Cr-Mo-0.12C (wt pct)-tempered steel plate at different normalization temperatures after hot rolling were investigated to enhance its comprehensive mechanical properties. The microstructure of the steel was mainly composed of a ferrite-bainite-tempered martensite mixture after the normalization-tempering process. The tensile properties and the ductile-brittle transition temperature values indicated that the best comprehensive mechanical properties can be obtained by normalizing at 930 °C and tempering at 700 °C. When the normalization temperature was 880 °C to 930 °C, the yield strength increased as the bainite and tempered martensite hard phase volume fractions increased. However, when the normalization temperature surpassed 980 °C, the precipitation strength behavior compensated for the adverse influence of the effective grain size growth, and yield strength was nearly unchanged. Total elongation reached a peak value when normalized at 930 °C, due to the optimal volume fraction ratio of the soft to hard phase. The Charpy impact fracture changed from a ductile to a brittle fracture with an increase in the normalization temperature. When the normalization temperature was 930 °C, the existence of a certain volume fraction of nano-precipitates and soft ferrite in the microstructure contributed to excellent ductile properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. W. Tan, Y. J. Chao: Mater. Sci. Eng. A, 2005, vol. 405, pp. 214–220.

    Article  Google Scholar 

  2. S. H. Song, J. Wu, X. J. Wei, D. Kumar, S. J. Liu, L. Q. Weng: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2398–2403.

    Article  Google Scholar 

  3. J.D. Robson, H.K.D.H. Bhadeshia: Mater. Sci. Technol., 1997, vol. 13, pp. 631.

    Article  CAS  Google Scholar 

  4. T. P. Hou, K. M. Wu: Acta Mater., 2013, vol. 61, pp. 2016–2024.

    Article  CAS  Google Scholar 

  5. J. Dobrzanski, A. Hernas: J. Mater. Process. Tech., 1995, vol. 53, pp. 101–108.

    Article  Google Scholar 

  6. Z. Jiang, P. Wang, D. Li, Y. Li: Mater. Sci. Eng. A, 2017, vol. 699, pp. 165–175.

    Article  CAS  Google Scholar 

  7. P. K. Roy: J. Inst. Eng. India Ser. D, 2018, vol. 99, pp. 33–38.

    Article  CAS  Google Scholar 

  8. R. C. Thomson, H. Bhadeshia: Mater. Sci. Tech., 1994, vol. 10, pp. 193–204.

    Article  CAS  Google Scholar 

  9. K. Kucharova, V. Sklenicka, M. Kvapilova: Mater. Charact., 2015, vol. 109, pp. 1–8.

    Article  CAS  Google Scholar 

  10. C. Pandey, A. Giri, M. M. Mahapatra: Mater. Sci. Eng. A, 2016, vol. 664, pp. 58–74.

    Article  CAS  Google Scholar 

  11. Toffolon–Masclet, Caroline, Roubaud, Justine, Anne–Francoise, S. Urvoy: Metall. Mater. Trans. A, 2017, vol. 48, pp. 2164–2178.

    Article  Google Scholar 

  12. Y. Zhang, P. Luo, H. Yan, J. Li: J. Mater. Eng. Perform., 2018, vol. 28, pp. 578–585.

    Article  Google Scholar 

  13. S. P. Hong, S. I. Kim, T. Y. Ahn, S. T. Hong, Y. M. Kim, Y. W.: Mater. Charact., 2016, vol. 115, pp. 8–13.

    Article  CAS  Google Scholar 

  14. C. Pandey, A. Giri, M. M. Mahapatra: Mater. Sci. Eng. A, 2016, vol. 657, pp. 173–184.

    Article  CAS  Google Scholar 

  15. A. Chatterjee, D. Chakrabarti, A. Moitra, R. Mitra, A. K. Bhaduri: Mater. Sci. Eng. A, 2014, vol. 618, pp. 219–231.

    Article  CAS  Google Scholar 

  16. P. Yan, Z. Liu, H. Bao, Y. Weng, W. Liu: Mater. Sci. Eng. A, 2013, vol. 588, pp. 22–28.

    Article  CAS  Google Scholar 

  17. P. Yan, Z. Liu: Mater. Sci. Eng. A, 2016, vol. 650, pp. 290–294.

    Article  CAS  Google Scholar 

  18. S. Li, Z. Eliniyaz, F. Sun, Y. Shen, L. Zhang, A. Shan: Mater. Sci. Eng. A, 2013, vol. 559, pp. 882–888.

    Article  CAS  Google Scholar 

  19. P. J. Ennis, A. Czyrska-Filemonowicz: Sadhana-Acad. P. Eng. S, 2003, vol. 28, pp. 709–30.

    Article  CAS  Google Scholar 

  20. H. Kim, J. Inoue, M. Okada, K. Nagata: ISIJ. Int., 2017, vol. 57, pp. 2229–2236.

    Article  CAS  Google Scholar 

  21. M. Bruchhausen, S. Holmström, I. Simonovski, T. Austin, J. M. Lapetite, S. Ripplinger: Theor. Appl. Fract. Mec., 2016, vol. 86, pp. 2–10.

    Article  CAS  Google Scholar 

  22. P. A. Manohar, M. Ferry, T. Chandra: ISIJ. Int., 1998, vol. 38, pp.913–924.

    Article  CAS  Google Scholar 

  23. K. Miyata, Y. Sawaragi: ISIJ Int., 2001, vol. 41, pp. 281–289.

    Article  CAS  Google Scholar 

  24. Y. Guo, B. Wang, S. Hou: Acta Metall. (English Letters), 2013, vol. 26, pp. 307–312.

    Article  CAS  Google Scholar 

  25. Y. Yang, Y. Chen, K. Sridharan, T. R. Allen: Metall. Mater. Trans. A, 2010, vol. 41, pp. 1441–1447.

    Article  CAS  Google Scholar 

  26. D. K. Hodgson, T. Dai, J. C. Lippold: Weld. J., 2015, vol. 94, pp. 250–256.

    Google Scholar 

  27. H. Liu, X. Lu, X. Jin, H. Dong, J. Shi: Scripta Mater., 2011, vol. 64, pp. 749–752.

    Article  CAS  Google Scholar 

  28. J. Zhang, Q. W. Cai, W. U. H., K. Zhang, W. U. Bo: J. Iron Steel Res. Int. (2012), vol. 19, pp. 67–72.

    Google Scholar 

  29. M.C. Niu, G. Zhou, W. Wang, M.B. Shahzad, K. Yang: Acta Mater., 2019.

  30. Q. Meng, J. Li, H. Zheng: Mater. Des., 2014, vol. 58, pp. 194–197.

    Article  CAS  Google Scholar 

  31. Q. Lai, O. Bouaziz, M. Goune: Mater. Sci. Eng. A, 2015, 646, pp. 322–331.

    Article  CAS  Google Scholar 

  32. D. Das, P. P. Chattopadhyay: J. Mate. Sci., 2009, vol. 44, pp. 2957–2965.

    Article  CAS  Google Scholar 

  33. U. K. Viswanathan, G. K. Dey, V. Sethumadhavan: Mater. Sci. Eng. A, 2005, vol. 398, pp. 367–372.

    Article  Google Scholar 

  34. P. Yan, Z. Liu, H. Bao, Y. Weng, W. Liu: Mater. Des., 2014, vol. 54, pp. 874–879.

    Article  CAS  Google Scholar 

  35. J. Han, H. Li, F. Barbaro, L. Jang, L. Ma: Mater. Sci. Eng. A, 2014, vol. 612, pp. 63–70.

    Article  CAS  Google Scholar 

  36. T. Hanamura, F. Yin, K. Nagai: ISIJ inter., 2004, vol. 44, pp. 610–617.

    Article  CAS  Google Scholar 

  37. T. Jia, Y. Zhou, X. Jia, Z. Wang: Metall. Mater. Trans A, 2017, vol. 48, pp. 685–696.

    Article  Google Scholar 

  38. C. Li, B. Ma, T. Li, T. Zhu: Acta Metall. Sin., 2014, vol. 27, pp. 422–429.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China and Baowu Steel Group Co. Ltd (Grant No. U1660205).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changsheng Li or Qiwen Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 14, 2019; accepted on October 5, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Tu, X., Wang, Q. et al. Microstructure and Properties of Fe-2Cr-Mo-0.12C (Wt Pct)-Tempered Steel Plate at Different Normalizing Temperature After Hot Rolling. Metall Mater Trans A 51, 6505–6516 (2020). https://doi.org/10.1007/s11661-020-06053-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-06053-z

Navigation