Skip to main content
Log in

Atomic Ordering at the Liquid-Al/MgAl2O4 Interfaces from Ab Initio Molecular Dynamics Simulations

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

MgAl2O4 spinel particles exist inevitably in Al-Mg alloy melts and may act as potential substrates for heterogeneous nucleation of solid aluminum during solidification processing. In this paper, we investigated systematically the atomic ordering of liquid Al adjacent to liquid-Al/MgAl2O4{1 1 1} interfaces using an ab initio molecular dynamics simulation technique. Our simulations revealed that the interaction between the liquid metal and the spinel surface results in the formation of an ordered metal layer that terminates the substrate. This new terminating layer is positively charged, chemically bonded to the substrate, topologically rough, and structurally coupled with the metal sublayers beneath the outmost oxygen layer. The present results may shed new light on the role of spinel particles in Al-Mg alloys and on heterogeneous nucleation processes in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H.-T. Li, Y. Wang and Z. Fan: Acta Mater. 2012, vol. 60, pp. 1528-1537.

    Article  CAS  Google Scholar 

  2. K. Kim: Surf. Interface Anal. 2015, vol. 47, pp. 429-438.

    Article  CAS  Google Scholar 

  3. L. Cao, G. C. Wang, Y. Zhao, S. Sridhar and H. Lei: Metal. Mater. Trans. B 2019, vol. 50B, pp. 2502-2507.

    Article  Google Scholar 

  4. L. Wang, W. Q. Lu, Q. D. Hu, M. X. Xia, Y. Wang and J. Q. Li: Acta Mater. 2017, vol. 139, pp. 75-85.

    Article  CAS  Google Scholar 

  5. Y.J. Zhang, S.H. Wang, E. Lordan, Y. Wang, and Z. Fan: J. Alloys Compds. vol. 785, pp. 1015–22.

  6. Z. Fan: Proceedings of the 11th International Conference on Magnesium Alloys and Their Applications, 24–27 July 2018, ed. Z. Fan and C. Mendis, Beaumont Estate, Old Windsor, UK, 2018, pp. 7–17.

  7. H. Men and Z. Fan: Metall. Mater. Trans. A 2018, vol. 49A, pp. 2766-2777.

    Article  Google Scholar 

  8. C. M. Fang, H. Men and Z. Fan: Metall. Mater. Trans. A 2018, vol. 49A, pp. 6231-42.

    Article  Google Scholar 

  9. Z. Fan: Metal. Mater. Trans. A, 2013, vol. 44A, pp. 1409-1418.

    Article  Google Scholar 

  10. K. E. Sickafus, J. W. Wills and N. W. Grimes: J. Am. Ceram. Soc. 1999, vol. 82, pp. 3279-3292.

    Article  CAS  Google Scholar 

  11. C. M. Fang, S. C. Parker and G. de With: J. Am. Ceramic Soc. 2000, vol. 83, pp. 2082-2084.

    Article  CAS  Google Scholar 

  12. M. J. Davies, S. C. Parker and G. W. Watson: J. Mater. Chem. 1994, vol. 4, pp. 813-816.

    Article  CAS  Google Scholar 

  13. C. M. Fang and Z. Fan: Comp. Mater. Sci. 2020, vol. 171, p. 109258.

    Article  CAS  Google Scholar 

  14. C. M. Fang and Z. Fan: Philos. Mag. Lett. 2020, vol. 100, pp.235-244

    Article  CAS  Google Scholar 

  15. G. Singh, Y. Yu, F. Ernst and R. Raj: Acta Mater. 2007, vol. 55, pp. 3049-3057.

    Article  CAS  Google Scholar 

  16. P. Shen, H. Fuji, T. Matsumoto and K. Nogi: Acta Mater. 2004, vol. 52, pp. 887-98.

    Article  CAS  Google Scholar 

  17. A. Hashibon, J. Adler, M. W. Finnis and W. D. Kaplan: Comp. Mater. Sci. 2002, vol. 24, pp. 443-452.

    Article  CAS  Google Scholar 

  18. W. D. Kaplan and Y. Kauffman: Annu. Rev. Mater. Res. 2006, vol. 36, pp. 1-48.

    Article  CAS  Google Scholar 

  19. H. Men and Z. Fan: Comp. Mater. Sci. 2014, vol. 85, pp. 1-7.

    Article  CAS  Google Scholar 

  20. B. Jiang, H. Men and Z. Fan: Comp. Mater. Sci. 2018, vol. 153, pp. 73-81.

    Article  CAS  Google Scholar 

  21. R. Scheinfest, S. Kostlmeier, F. Ernst, C. Elsasser, T. Wagner and M. W. Finnis: Philos. Mag. A 2001, vol. 81A, pp. 927-955.

    Article  Google Scholar 

  22. J. S. Wang, A. P. Horsfield, U. Schwingenschlögl and P. D. Lee: Phys. Rev. B 2010, vol. 82B, p. 144203.

    Article  Google Scholar 

  23. D. Wearing, A. P. Horsfielf, W. W. Xu, and P. D. Lee: J. Alloys and Compounds 2016, vol. 664, pp. 460-468.

    Article  CAS  Google Scholar 

  24. Y. Kauffmann, S. H. Oh, C. T. Koch, A. Hashibon, C. Scheu, M. Rühle and W. D. Kaplan: Acta Mater. 2011, vol. 59, pp. 4378-4386.

    Article  CAS  Google Scholar 

  25. S. D. Ma, A. J. Brown, R. Yan, R.L. Davidchack, P. B. Howes, C. Nicklin, Q. J. Zhai, T. Jing and H. B. Dong: Commun. Chem. 2019, vol. 2, p. 1.

    Article  Google Scholar 

  26. C. M. Fang and Z. Fan: Metall. Mater. Transaction A 2020, vol. 51, pp. 788-797.

    Article  CAS  Google Scholar 

  27. J.W. Arblaster: Selected values of the crystallographic properties of the elements, ASM International, Materials Park, Ohio, 2018, pp. 124-132.

    Google Scholar 

  28. G. Fiquet, P. Richet and G. Montagnac: Phys. Chem. Miner. 1999, vol. 27, pp. 103-111.

    Article  CAS  Google Scholar 

  29. G. Kresse and J. Hafner: Phys. Rev. B 1994, vol. 49B, pp. 14251-14269.

    Article  Google Scholar 

  30. P. E. Blöchl: Phys. Rev. B 1994, vol. 50B, pp. 17953-17978.

    Article  Google Scholar 

  31. J. P. Perdew and K. Burke, M. Ernzerhof: Phys. Rev. Lett. 1996, vol. 77, pp. 3865-3868.

    Article  CAS  Google Scholar 

  32. H. J. Monkhorst and J. D. Pack: Phys. Rev. B 1976, vol. 13B, pp. 5188-5192.

    Article  Google Scholar 

  33. D. G. Sangiovanni, G. K. Gueorguiev and A. Kakanakova-Georgieva, Phys. Chem. Chem. Phys. 2018, vol. 20, pp. 17751-17761.

    Article  CAS  Google Scholar 

  34. R. F. W. Bader: J. Phys. Chem. A 1998, vol. 102A, pp. 7314-7323.

    Article  Google Scholar 

  35. G. Henkelman, A. Arnaldsson and H. Jónsson: Comp. Mater. Sci. 2006, vol. 36, pp. 354-360.

    Article  Google Scholar 

  36. I. D. Brown: Chem. Rev. 2009, vol. 109, pp. 6858–6919.

    Article  CAS  Google Scholar 

  37. A. Takeuchi and A. Inoue: Mater. Trans. 2005, vol. 46, pp. 2817-2829.

    Article  CAS  Google Scholar 

  38. A. Cibula: J. Inst. Met. 1951, vol. 80, pp. 1-16.

    CAS  Google Scholar 

  39. A. L. Greer, A. M. Bunn, A. Tronche, P.V. Evans and D. J. Bristo: Acta Mater. 2000, vol. 48, pp. 2823-2835.

    Article  CAS  Google Scholar 

  40. Z. Fan, Y. Wang, Y. Zhang, T. Qin, X. R. Zhou, G. E. Thompson and T. Hashimoto: Acta Mater. 2015, vol. 84, pp. 292-304.

    Article  CAS  Google Scholar 

  41. K.F. Kelton and A.L. Greer: Nucleation in Condensed Matter: Applications in Materials and Biology, Pergamon Materials Series, Elsevier Ltd. Oxford/Amsterdam, 2010, pp. 181–204, 473–78.

Download references

Acknowledgments

Financial support from EPSRC (UK) under grant number EP/N007638/1 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Fan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted February 26, 2020.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 713 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, C.M., Fan, Z. Atomic Ordering at the Liquid-Al/MgAl2O4 Interfaces from Ab Initio Molecular Dynamics Simulations. Metall Mater Trans A 51, 6318–6326 (2020). https://doi.org/10.1007/s11661-020-05994-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05994-9

Navigation