Skip to main content
Log in

Facile One-Step Preparation of 3D Nanoporous Cu/Cu6Sn5 Microparticles as Anode Material for Lithium-Ion Batteries with Superior Lithium Storage Properties

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this article, three-dimensional nanoporous Cu/Cu6Sn5 microparticles (3D-NP Cu/Cu6Sn5 MPs) were prepared by one-step chemical dealloying of Cu20Sn80 (at%) alloy slices in a mixed aqueous solution of HF and HNO3 and then filled into a three-dimensional porous copper foam (3D-PCF) skeleton as anode (3D-PCF@Cu/Cu6Sn5) for lithium-ion batteries (LIBs). The results show that the ellipsoidal 3D-NP Cu/Cu6Sn5 MPs with feature sizes of 3 to 8 μm are composed of numerous uniform nanoparticles (100 to 200 nm) and plenty of voids. Compared with similar Sn-based electrodes in this work and other published reports, the as-prepared electrode delivers more outstanding electrochemical performance with a superior reversible capacity of 1.90 mAh cm−2, 84.44% capacity retention and > 99.5% coulombic efficiency upon 200 cycles. The cycling stability and integrity of the overall structure of the composite electrode have been greatly enhanced under the synergistic effect of the buffer effect of copper as the inactive component, the unique hierarchical porous electrode architecture and the effective limitation in three dimensions of the 3D-PCF skeleton. We are confident that this work can provide new-generation LIBs with a promising anode candidate and a facile method of dealloying, and a subsequent filling step can achieve the practical production and application of high-performance LIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. 1. J.M. Tarascon and M. Armand: Nature, 2001, vol. 414, pp. 359-367.

    CAS  Google Scholar 

  2. 2. J.B. Goodenough and Y. Kim: Chem. Mater., 2010, vol. 22, pp. 587-603.

    CAS  Google Scholar 

  3. 3. H. Liu, X. Liu, S. Wang, H. Liu and L. Li: Energy Storage Materials, 2020, vol. 28, pp. 122-145.

    Google Scholar 

  4. 4. Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa and T. Miyasaka: Science, 1997, vol. 276, pp. 1395-1397.

    CAS  Google Scholar 

  5. 5. M.N. Obrovac, L. Christensen, D.B. Le and J.R. Dahn: J. Electrochem. Soc., 2007, vol. 154, pp. A849.

    CAS  Google Scholar 

  6. 6. B.M. Bang, J. Lee, H. Kim, J. Cho and S. Park: Adv. Energy Mater., 2012, vol. 2, pp. 878-883.

    CAS  Google Scholar 

  7. 7. D.S. Su and R. Schlogl: ChemSusChem, 2010, vol. 3, pp. 136-168.

    CAS  Google Scholar 

  8. 8. S. Yang, S. Wang, X. Liu and L. Li: Carbon, 2019, vol. 147, pp. 540-549.

    CAS  Google Scholar 

  9. 9. S. Yang, W. Yue, J. Zhu, Y. Ren and X. Yang: Adv. Funct. Mater., 2013, vol. 23, pp. 3570-3576.

    CAS  Google Scholar 

  10. 10. D. Deng, M.G. Kim, J.Y. Lee and J. Cho: Energ. Environ. Sci., 2009, vol. 2, pp. 818.

    CAS  Google Scholar 

  11. 11. J. Zhu, X. Zhang, C. Zeng, A. Liu and G. Hu: Mater. Lett., 2017, vol. 209, pp. 338-341.

    CAS  Google Scholar 

  12. 12. L. Xia, S. Wang, G. Liu, L. Ding, D. Li, H. Wang and S. Qiao: Small, 2016, vol. 12, pp. 853-859.

    CAS  Google Scholar 

  13. 13. P. Lian, X. Zhu, S. Liang, Z. Li, W. Yang and H. Wang: Electrochim. Acta, 2011, vol. 56, pp. 4532-4539.

    CAS  Google Scholar 

  14. 14. S. Shi, T. Deng, M. Zhang and G. Yang: Electrochim. Acta, 2017, vol. 246, pp. 1104-1111.

    CAS  Google Scholar 

  15. 15. Y. Cheng, Z. Yi, C. Wang, Y. Wu and L. Wang: Chem. Eng. J., 2017, vol. 330, pp. 1035-1043.

    CAS  Google Scholar 

  16. 16. X. Wu, Y. Guo and L. Wan: Chemistry - An Asian Journal, 2013, vol. 8, pp. 1948-1958.

    CAS  Google Scholar 

  17. 17. Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa and T. Miyasaka: Science, 1997, vol. 276, pp. 1395-1397.

    CAS  Google Scholar 

  18. 18. S.Y. Hong, Y. Kim, Y. Park, A. Choi, N. Choi and K.T. Lee: Energ. Environ. Sci., 2013, vol. 6, pp. 267-281.

    Google Scholar 

  19. 19. M. Winter and J.O. Besenhard: Electrochim. Acta, 1999, vol. 45, pp. 31-50.

    CAS  Google Scholar 

  20. 20. S. Yang, P.Y. Zavalij and M.S. Whittingham: Electrochem. Commun., 2003, vol. 5, pp. 587-590.

    CAS  Google Scholar 

  21. 21. S.D. Beattie and J.R. Dahn: J. Electrochem. Soc., 2003, vol. 150, pp. A894.

    CAS  Google Scholar 

  22. 22. H. Shi, Z. Fang, X. Zhang, F. Li, Y. Tang, Y. Zhou, P. Wu and G. Yu: Nano Lett., 2018, vol. 18, pp. 3193-3198.

    CAS  Google Scholar 

  23. 23. F. Xin, H. Zhou, Q. Yin, Y. Shi, F. Omenya, G. Zhou and M.S. Whittingham: ACS Omega, 2019, vol. 4, pp. 4888-4895.

    CAS  Google Scholar 

  24. R. Zhang, S. Upreti and M. Stanley Whittingham: J. Electrochem. Soc., 2011, vol. 158, pp. A1498.

  25. 25. X. Dong, W. Liu, X. Chen, J. Yan, N. Li, S. Shi, S. Zhang and X. Yang: Chem. Eng. J., 2018, vol. 350, pp. 791-798.

    CAS  Google Scholar 

  26. 26. J. Liu, Y. Wen, P.A. van Aken, J. Maier and Y. Yu: Nano Lett., 2014, vol. 14, pp. 6387-6392.

    CAS  Google Scholar 

  27. 27. J. Hassoun, S. Panero and B. Scrosati: J. Power Sources, 2006, vol. 160, pp. 1336-1341.

    CAS  Google Scholar 

  28. 28. J. Zhang and Y. Xia: J. Electrochem. Soc., 2006, vol. 153, pp. A1466.

    CAS  Google Scholar 

  29. 29. H. Guo, H. Zhao, X. Jia, X. Li and W. Qiu: Electrochim. Acta, 2007, vol. 52, pp. 4853-4857.

    CAS  Google Scholar 

  30. 30. M. Valvo, U. Lafont, L. Simonin and E.M. Kelder: J. Power Sources, 2007, vol. 174, pp. 428-434.

    CAS  Google Scholar 

  31. 31. X. Fan, Y. Shi, J. Wang, J. Wang, X. Shi, L. Xu, L. Gou and D. Li: Solid State Ionics, 2013, vol. 237, pp. 1-7.

    CAS  Google Scholar 

  32. 32. H.C. Shin and M. Liu: Adv. Funct. Mater., 2005, vol. 15, pp. 582-586.

    CAS  Google Scholar 

  33. 33. J. Chen, L. Yang, S. Fang and S. Hirano: J. Power Sources, 2012, vol. 209, pp. 204-208.

    CAS  Google Scholar 

  34. 34. L. Xue, Z. Fu, Y. Yao, T. Huang and A. Yu: Electrochim. Acta, 2010, vol. 55, pp. 7310-7314.

    CAS  Google Scholar 

  35. 35. Z. Wang, M. Wang, Z. Yang, Y. Bai, Y. Ma, G. Wang, Y. Huang and X. Li: ChemElectroChem, 2017, vol. 4, pp. 345-352.

    CAS  Google Scholar 

  36. 36. C. Wu, J. Maier and Y. Yu: Adv. Funct. Mater., 2015, vol. 25, pp. 3488-3496.

    CAS  Google Scholar 

  37. 37. B. Wang, B. Luo, X. Li and L. Zhi: Mater. Today, 2012, vol. 15, pp. 544-552.

    CAS  Google Scholar 

  38. 38. G.F. Ortiz, M.C. López, R. Alcántara and J.L. Tirado: J. Alloy. Compd., 2014, vol. 585, pp. 331-336.

    CAS  Google Scholar 

  39. 39. J.B. Cook, E. Detsi, Y. Liu, Y. Liang, H. Kim, X. Petrissans, B. Dunn and S.H. Tolbert: ACS Appl. Mater. Inter., 2016, vol. 9, pp. 293-303.

    Google Scholar 

  40. 40. L. Sun, H. Cai, W. Zhang, X. Ren, P. Zhang and J. Liu: Integr. Ferroelectr., 2016, vol. 171, pp. 193-202.

    CAS  Google Scholar 

  41. 41. L. Su, J. Fu, P. Zhang, L. Wang, Y. Wang and M. Ren: RSC Adv., 2017, vol. 7, pp. 28399-28406.

    CAS  Google Scholar 

  42. 42. Y. Xing, S. Wang, B. Fang, Y. Feng and S. Zhang: Micropor. Mesopor. Mat., 2018, vol. 261, pp. 237-243.

    CAS  Google Scholar 

  43. 43. H.C. Shin and M. Liu: Adv. Funct. Mater., 2005, vol. 15, pp. 582-586.

    CAS  Google Scholar 

  44. 44. L. Xue, Z. Fu, Y. Yao, T. Huang and A. Yu: Electrochim. Acta, 2010, vol. 55, pp. 7310-7314.

    CAS  Google Scholar 

  45. 45. J.S. Thorne, J.R. Dahn, M.N. Obrovac and R.A. Dunlap: J. Power Sources, 2012, vol. 216, pp. 139-144.

    CAS  Google Scholar 

  46. 46. Y. Zhang, S. Yang, S. Wang, X. Liu, L. Li: Energy Storage Materials, 2019, vol. 18, pp. 447-455.

    Google Scholar 

  47. 47. Y. Guo, X. Zeng, Y. Zhang, Z. Dai, H. Fan, Y. Huang, W. Zhang, H. Zhang, J. Lu, F. Huo and Q. Yan: ACS Appl. Mater. Inter., 2017, vol. 9, pp. 17172-17177.

    CAS  Google Scholar 

  48. 48. Q. Tang, Y. Cui, J. Wu, D. Qu, A.P. Baker, Y. Ma, X. Song and Y. Liu: Nano Energy, 2017, vol. 41, pp. 377-386.

    CAS  Google Scholar 

  49. 49. S. Kang, X. Chen and J. Niu: Nano Lett., 2017, vol. 18, pp. 467-474.

    Google Scholar 

  50. 50. H. Wang, Q. Wu, D. Cao, X. Lu, J. Wang, M.K.H. Leung, S. Cheng, L. Lu and C. Niu: Materials Today Energy, 2016, vol. 1-2, pp. 24-32.

    Google Scholar 

  51. 51. X. Liang, J. Wang, S. Zhang, L. Wang, W. Wang, L. Li, H. Wang, D. Huang, W. Zhou and J. Guo: Appl. Surf. Sci., 2019, vol. 476, pp. 28-35

    CAS  Google Scholar 

Download references

Acknowledgments

We thank the following for the financial support: the National Natural Science Foundation of China (51604177), the State Key Basic Research Program of PRC (2013CB934001), the Research Grants Council of the Hong Kong Special Administrative Region, China (GRF PolyU152174/17E), the Hong Kong Scholars Program (XJ2014045, G-YZ67), the China Postdoctoral Science Foundation (2015M570784), the International S&T Innovation Cooperation Program of Sichuan Province (2020YFH0039), the Chengdu International S&T Cooperation Funded Project (2019-GH02-00015-HZ), the “1000 Talents Plan” of Sichuan Province, the Fundamental Research Funds for the Central Universities, the Experimental Technology Project of Sichuan University (20200080), and the Talent Introduction Program of Sichuan University (YJ201410). Additionally, the authors especially thank Dr. Shanling Wang (Analytical & Testing Center, Sichuan University) for help in TEM characterization.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbo Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 9, 2020.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 872 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, P., Liu, W., Chen, X. et al. Facile One-Step Preparation of 3D Nanoporous Cu/Cu6Sn5 Microparticles as Anode Material for Lithium-Ion Batteries with Superior Lithium Storage Properties. Metall Mater Trans A 51, 5965–5973 (2020). https://doi.org/10.1007/s11661-020-05980-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05980-1

Navigation