Skip to main content
Log in

Effect of Initial Texture on the Evolution of Microstructure and Texture During Rolling of Commercially Pure Titanium at Room and Cryogenic Temperature

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The evolution of texture and microstructure of commercially pure titanium during unidirectional rolling at room and cryogenic temperature was studied for two different initial orientations, namely RD (rolling direction)-split basal (BA orientation) and prismatic-pyramidal (PP orientation) till 90 pct rolling reduction. Effect of micro-mechanisms of deformation by slip and twinning on texture evolution and grain fragmentation was studied by employing characterization tools like bulk texture measurement using X-ray diffraction and electron back scatter diffraction. Both orientations yield split TD (transverse direction) texture for 90 pct rolling reduction at both the temperatures. Orientation BA showed severe twinning that saturated at deformation of 50 pct followed by slip dominated deformation, while orientation PP showed slip dominated deformation with marginal twinning throughout the rolling reduction at room temperature. Profuse twinning led to homogeneous grain refinement in orientation BA, while orientation PP showed heterogeneous grain refinement due to absence of twinning in some grains at the final stage of deformation. Rolling at cryogenic temperature enhances grain refinement due to extensive twinning that leads to weakening of texture in BA orientation and increase in intensity of texture for PP orientation compared to room temperature rolling. The evolution of microstructure and texture contributed to similar hardness for 90 pct room and cryogenic temperature rolled BA orientation, while 90 pct room temperature rolled PP orientation showed lower hardness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. 1 R.R. Boyer: Mater. Sci. Eng. A, 1996, vol. 213, pp. 103–14.

    Article  Google Scholar 

  2. M.A. Elias, C.N. Lima, J.H.C. Valiev, and R. Meyers: J. Biol. Mater. Sci., 2008, pp. 1–4.

  3. 3 Z.S. Zhu, R.Y. Liu, M.G. Yan, C.X. Cao, J.L. Gu, and N.P. Chen: J. Mater. Sci., 1997, vol. 32, pp. 5163–7.

    Article  CAS  Google Scholar 

  4. 4 I. Sabirov, M.T. Perez-Prado, J.M. Molina-Aldareguia, I.P. Semenova, G.K. Salimgareeva, and R.Z. Valiev: Scr. Mater., 2011, vol. 64, pp. 69–72.

    Article  CAS  Google Scholar 

  5. 5 A. Jäger, V. Gärtnerova, and K. Tesař: Mater. Sci. Eng. A, 2015, vol. 644, pp. 114–20.

    Article  Google Scholar 

  6. 6 S.R. Kalidindi, C.A. Bronkhorst, and L. Anand: J. Mech. Phys. Solids, 1992, vol. 40, pp. 537–69.

    Article  CAS  Google Scholar 

  7. 7 Y. Zhong, F. Yin, and K. Nagai: J. Mater. Res., 2008, vol. 23, pp. 2954–66.

    Article  CAS  Google Scholar 

  8. J.W. Christian and S. Mahajan: Prog. Mater. Sci., 1995, 39, vol. 39.

  9. M. ArulKumar, I.J. Beyerlein, and C.N. Tomé: Acta Mater., 2016, vol. 116, pp. 143–54.

    Article  CAS  Google Scholar 

  10. 10 M.A. Meyers, O. Vöhringer, and V.A. Lubarda: Acta Mater., 2001, vol. 49, pp. 4025–39.

    Article  CAS  Google Scholar 

  11. 11 Y.S. Li, N.R. Tao, and K. Lu: Acta Mater., 2008, vol. 56, pp. 230–41.

    Article  CAS  Google Scholar 

  12. 12 D.H. Sastry, Y.V.R.K. Prasad, and K.I. Vasu: Scr. Metall., 1969, vol. 3, pp. 927–30.

    Article  CAS  Google Scholar 

  13. 13 Y. Wang, L.Q. Chen, Z.K. Liu, and S.N. Mathaudhu: Scr. Mater., 2010, vol. 62, pp. 646–9.

    Article  CAS  Google Scholar 

  14. 14 Y.F. Wu, S. Li, Z.G. Ding, W. Liu, Y.H. Zhao, and Y.T. Zhu: Scr. Mater., 2016, vol. 112, pp. 101–5.

    Article  CAS  Google Scholar 

  15. 15 A. Serra, D.J. Bacon, and R.C. Pond: Acta Metall., 1988, vol. 36, pp. 3183–03.

    Article  CAS  Google Scholar 

  16. 16 H. Ding, N. Shen, and Y.C. Shin: J. Mater. Process. Technol., 2012, vol. 212, pp. 1003–13.

    Article  CAS  Google Scholar 

  17. 17 C.S. Meredith and A.S. Khan: J. Mater. Process. Technol., 2015, vol. 219, pp. 257–70.

    Article  CAS  Google Scholar 

  18. M. ArulKumar, I.J. Beyerlein, R.J. McCabe, and C.N. Tomé: Nat. Commun., 2016, vol. 7, pp. 1–9.

    Article  Google Scholar 

  19. 19 Y. Cao, S. Ni, X. Liao, M. Song, and Y. Zhu: Mater. Sci. Eng. R Reports, 2018, vol. 133, pp. 1–59.

    Article  Google Scholar 

  20. 20 S. Nourbakhsh and T.D. O’Brien: Mater. Sci. Eng., 1988, vol. 100, pp. 109–14.

    Article  CAS  Google Scholar 

  21. 21 N. Bozzolo, N. Dewobroto, H.R. Wenk, and F. Wagner: J. Mater. Sci., 2007, vol. 42, pp. 2405–16.

    Article  CAS  Google Scholar 

  22. N.P. Gurao, S. Sethuraman, and S. Suwas: Metall. Mater. Trans. A. 2013, vol. 44, pp. 1497–507.

    Article  Google Scholar 

  23. 23 A. Ghosh, A. Singh, and N.P. Gurao: Mater. Charact., 2017, vol. 125, pp. 83–93.

    Article  CAS  Google Scholar 

  24. S.L. Zherebtsov, S.V. Dyakonov, G.S. Salem, A.A. Sokolenko, V.I. Salishchev, G.A. Semiatin: Acta Mater., 2013, vol. 61, pp. 1167–78.

    Article  CAS  Google Scholar 

  25. 25 Y.B. Chun, S.H. Yu, S.L. Semiatin, and S.K. Hwang: Mater. Sci. Eng. A, 2005, vol. 398, pp. 209–19.

    Article  Google Scholar 

  26. 26 N.P. Gurao, R. Kapoor, and S. Suwas: Acta Mater., 2011, vol. 59, pp. 3431–46.

    Article  CAS  Google Scholar 

  27. 27 S. Sinha and N.P. Gurao: Mater. Des., 2017, vol. 116, pp. 686–93.

    Article  CAS  Google Scholar 

  28. S. Sinha and N.P. Gurao: Metall. Mater. Trans. A., 2017, vol. 48, pp. 5813–32.

    Article  Google Scholar 

  29. 29 S. Sinha and N.P. Gurao: Mater. Sci. Eng. A, 2017, vol. 691, pp. 100–9.

    Article  CAS  Google Scholar 

  30. 30 H.P. Lee, C. Esling, and H.J. Bunge: Textures Microstruct., 1988, vol. 7, pp. 317–37.

    Article  CAS  Google Scholar 

  31. 31 Y. Guo, H. Abdolvand, T.B. Britton, and A.J. Wilkinson: Acta Mater., 2017, vol. 126, pp. 221–35.

    Article  CAS  Google Scholar 

  32. M. Arul Kumar, I.J. Beyerlein, and C.N. Tomé: Acta Mater., 2016, vol. 116, pp. 143–54.

  33. 33 F. Siska, L. Stratil, J. Cizek, A. Ghaderi, and M. Barnett: Acta Mater., 2017, vol. 124, pp. 9–16.

    Article  CAS  Google Scholar 

  34. 34 Y.N. Wang and J.C. Huang: Mater. Chem. Phys., 2003, vol. 81, pp. 11–26.

    Article  CAS  Google Scholar 

  35. 35 S. Sinha, A. Ghosh, and N.P. Gurao: Philos. Mag., 2016, vol. 96, pp. 1485–508.

    Article  CAS  Google Scholar 

  36. 36 Z.S. Basinski, M.S. Szczerba, M. Niewczas, J.D. Embury, and S.J. Basinski: Rev. Métallurgie, 1997, vol. 94, pp. 1037–44.

    Article  CAS  Google Scholar 

  37. 37 A.A. Salem, S.R. Kalidindi, and R.D. Doherty: Scr. Mater., 2002, vol. 46, pp. 419–23.

    Article  CAS  Google Scholar 

  38. 38 A.A. Salem, S.R. Kalidindi, R.D. Doherty, and S.L. Semiatin: Metall. Mater. Trans. A, 2006, vol. 37, pp. 259–68.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Author would like to thank Dr. Manasij Yadava for suggestions related to discrete PF plots and Mr. Roopam Jain for helping in the hardness test. This work was financially supported by Department of Science and Technology, Government of India via Science and Engineering Research Board. Thanks are due to the staff at the Texture Laboratory, Advanced Centre of Materials Science, Indian Institute of Technology, Kanpur, India for help in characterization facilities used in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. Gurao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 13, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, V.K., Gupta, S. & Gurao, N.P. Effect of Initial Texture on the Evolution of Microstructure and Texture During Rolling of Commercially Pure Titanium at Room and Cryogenic Temperature. Metall Mater Trans A 51, 5848–5860 (2020). https://doi.org/10.1007/s11661-020-05979-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05979-8

Navigation