Skip to main content
Log in

The Inhibiting Effect of Reactive Element Oxides on the Pack Cementation Aluminide Coating Formation

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Minor additions of reactive elements (Y, Ce, La, Zr, Hf, etc.) significantly affect the high-temperature oxidation behavior of protective oxide scales. Designing oxidation-resistant aluminide coatings having optimum content of reactive elements is challenging due to the observed hindering effect of these elements on the coating formation. In the current investigation, this effect has been studied by examination of a high activity aluminide coating in powder mixtures of Al, NH4Cl, Y2O3, and Al2O3 with different Y2O3 contents. Oxides of Zr, Ce, and La were also examined for comparison. Cross-sectional microstructure of coatings and weight changes of the specimens were studied at different aluminizing times. The results showed that the inhibition effect applied for all reactive elements under investigation with different strengths and intensifies with more additions of Y2O3 up to a saturation limit. The observed inhibition effect was explained based on the equilibrium amounts of gaseous halides responsible for transfer of coating elements. It was demonstrated that the addition of Y2O3 can decrease the amount of aluminum carrier halide significantly. The mechanism of inhibition was attributed to the large agglomerates rich in aluminum and reactive elements detected in the pack after aluminizing treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W. Chen, L. He, Y. Guo, X. Shan, J. Li, F. Guo, X. Zhao, N. Ni, and P. Xiao, Surf. Coat. Technol., 2019, vol. 357, pp. 322-31. https://doi.org/10.1016/j.surfcoat.2018.10.021.

    Article  CAS  Google Scholar 

  2. C. Quan, S. Deng, Y. Jiang, C. Jiang, M. Shuai, J. Alloys Compd., 2019, vol. 793, pp. 170-78. https://doi.org/10.1016/j.jallcom.2019.04.063.

    Article  CAS  Google Scholar 

  3. D. Naumenko and B. A. Pint, W. J. Quadakkers, Oxid. Met., 2016, vol. 86, pp. 1-43. https://doi.org/10.1007/s11085-016-9625-0

    Article  CAS  Google Scholar 

  4. J. Kipkemoi and D. Tsipas, J. Mater. Sci., 1996, vol. 31, pp. 6247–50. https://doi.org/10.1007/BF00354445

    Article  CAS  Google Scholar 

  5. F. Pedraza, A. D. Kennedy, J. Kopecek, and P. Moretto, Surf. Coat. Technol., 2006, vol. 200, pp. 4032– 39. https://doi.org/10.1016/j.surfcoat.2004.12.019

    Article  CAS  Google Scholar 

  6. K. Godlewski and E.Godlewska, Oxid. Met., 1986, vol. 26, pp. 125-38. https://doi.org/10.1007/BF00664277

    Article  CAS  Google Scholar 

  7. K. Shirvani, M. Saremi, A. Nishikata, and T. Tsuru, Mater. Trans. A, 2002, vol. 43A, pp. 2622 – 28.

    Article  Google Scholar 

  8. Y. Zhou, X. Zhao, C. Zhao, W. Hao, X. Wang, and P. Xiao, Corros. Sci., 2017, vol. 123, pp. 103–115. https://doi.org/10.1016/j.corsci.2017.04.008

    Article  CAS  Google Scholar 

  9. L. Qian, F. Xu, K. T. Voisey, V. Nekouie, Z. Zhou, V. V. Silberschmidt, and X. Hou, Surf. Coat. Technol., 2017, vol. 311, pp. 238–247. https://doi.org/10.1016/j.surfcoat.2016.12.106

    Article  CAS  Google Scholar 

  10. X. Tan, X. Peng, F. Wang, Surf. Coat. Technol., 2013, vol. 224, pp. 62–70. https://doi.org/10.1016/j.surfcoat.2013.03.003

    Article  CAS  Google Scholar 

  11. J. Wen, L. Yang, L. Zhu, J. Zhang, and Q.-A. Li, Mater. Sci. Eng. A, 2009, vol. 499, pp. 123–125. https://doi.org/10.1016/j.msea.2007.11.139

    Article  CAS  Google Scholar 

  12. M. Safari, F. Shariari-Nogorani, Surf. Coat. Technol., 2017, vol. 329, pp. 218–223. https://doi.org/10.1016/j.surfcoat.2017.09.035

    Article  CAS  Google Scholar 

  13. M. Mobin, H. K. Sharma, and S. K. Hasan, Anti-Corros. Method Mater., 2002, vol. 49, pp. 283–294. https://doi.org/10.1108/00035590210439757

    Article  CAS  Google Scholar 

  14. R. Bianco and R. A. Rapp, J. Electrochem. Soc., 1993, vol. 140, pp. 1181–1190. https://doi.org/10.1149/1.2056219

    Article  CAS  Google Scholar 

  15. X. Zhao and C. Zhou, Corros. Sci., 2014, vol. 86, pp. 223–230. https://doi.org/10.1016/j.corsci.2014.05.018

    Article  CAS  Google Scholar 

  16. H. Zahedi, F. Shahriari-Nogorani, and M. Safari, Met. Mater. Int., 2019. https://doi.org/10.1007/s12540-019-00483-0.

    Article  Google Scholar 

  17. M. S. Zare-Mohazabie, and F. Shahriari-Nogorani, Surf. Coat. Technol., 2019, vol. 378, 125066. https://doi.org/10.1016/j.surfcoat.2019.125066.

    Article  CAS  Google Scholar 

  18. Z. D. Xiang, J. S. Burnell-Gray, and P. K. Datta, J. Mater. Sci., 2001, vol. 36, pp. 5673–82. https://doi.org/10.1023/A:1012534220165

    Article  CAS  Google Scholar 

  19. G. W. Goward and D. H. Boone, Oxid. Met., 1971, vol. 3, pp. 475–495. https://doi.org/10.1007/BF00604047

    Article  CAS  Google Scholar 

  20. D. K. Das, V. Singh, and S. V. Joshi, Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2173–88. https://doi.org/10.1007/s11661-998-0042-0

    Article  CAS  Google Scholar 

  21. B. Nciri and L. Vandenbulcke, Thin Solid Films, 1986, vol. 139, pp. 311-324. https://doi.org/10.1016/0040-6090(86)90060-X

    Article  CAS  Google Scholar 

  22. G.H. Marijnissen, H.V. Gameron, and J.A. Klosterman: Proceedings of High Temperature Alloys for Gas Turbines, D. Coutsouradis, P. Felix, H. Fischmeister, eds., Applied Science Publishers, pp. 231–38, 1978.

  23. Z. D. Xiang and P. K. Datta, Acta Mater., 2006, vol. 54, pp. 4453–63. https://doi.org/10.1016/j.actamat.2006.05.032

    Article  CAS  Google Scholar 

  24. S. R. Levine, and R. M. Caves, J. Electrochem. Soc., 1974, vol. 121, pp. 1051-64. https://doi.org/10.1149/1.2401976

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors appreciate Department of Materials Science and Engineering, Shiraz University of Technology for providing the research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Shahriari Nogorani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 9, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebadi, F., Shahriari Nogorani, F. & Fatemi, F. The Inhibiting Effect of Reactive Element Oxides on the Pack Cementation Aluminide Coating Formation. Metall Mater Trans A 51, 5958–5964 (2020). https://doi.org/10.1007/s11661-020-05973-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05973-0

Navigation