Skip to main content
Log in

Formation of Refined Grain Size Less Than 5 nm and Nano-sized Undulations in the Bonding Interface Region of an Ultrasonic Spot Welded Cu/Ni Joint

  • Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

The microstructure in the bonding interface region of an ultrasonic spot welded Cu/Ni joint was investigated. At the copper side near the bonding interface, all the refined grains with random orientations and high-angle grain boundaries are < 5 nm in size. Nano-sized undulations occur at the Cu/Ni interface. The formation of nano-sized grains and undulation characteristics is ascribed to the dynamic recrystallization as well as shear instability in ultrasonic spot welding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. [1] D.A. Hughes and N. Hansen: Phys. Rev. Lett., 2001, vol. 87, p. 135503.

    Article  CAS  Google Scholar 

  2. [2] J.Q. Duan, M.Z. Quadir, W. Xu, C. Kong, and M. Ferry: Acta Mater., 2017, vol. 123, pp. 11-23.

    Article  CAS  Google Scholar 

  3. [3] H. Emami, K. Edalati, J. Matsuda, E. Akiba, and Z. Horita: Acta Mater., 2015, vol. 88, pp. 190-95.

    Article  CAS  Google Scholar 

  4. [4] G.S. Dyakonov, S. Mironov, I.P. Semenova, R.Z. Valiev, and S.L. Semiatin: Acta Mater., 2019, vol. 173, pp. 174-83.

    Article  CAS  Google Scholar 

  5. [5] K. Edalati and Z. Horita: Acta Mater., 2011, vol. 59, pp. 6831-36.

    Article  CAS  Google Scholar 

  6. [6] F. Lin, Y. Zhang, N. Tao, W. Pantleon, and D.J. Jensen: Acta Mater., 2014, vol. 72, pp. 252-61.

    Article  CAS  Google Scholar 

  7. [7] K. Wang, N.R. Tao, G. Liu, J. Lu, and K. Lu: Acta Mater., 2006, vol. 54, pp. 5281-91.

    Article  CAS  Google Scholar 

  8. [8] Z.L. Ni, J.J. Yang, Z.T. Gao, Y.X. Hao, L.F. Chen, and F.X. Ye: J. Manuf. Process., 2020, vol. 50, pp. 57-67.

    Article  Google Scholar 

  9. [9] V.K. Patel, S.D. Bhole, and D.L. Chen: Scr. Mater., 2011, vol. 65, pp. 911-14.

    Article  CAS  Google Scholar 

  10. [10] H.T. Fujii, Y. Goto, Y.S. Sato, and H. Kokawa: Scr. Mater., 2016, vol. 116, pp. 135-38.

    Article  CAS  Google Scholar 

  11. [11] A. Macwan and D.L. Chen: Mater. Des., 2015, vol. 84, pp. 261-69.

    Article  CAS  Google Scholar 

  12. [12] J. Lin, S. Nambu, and T. Koseki: Scr. Mater., 2020, vol. 178, pp. 218-22.

    Article  CAS  Google Scholar 

  13. [13] T.H. Kim, J. Yum, S.J. Hu, J.P. Spicer, and J.A. Abell: CIRP Ann. - Manuf. Tech., 2011, vol. 60, pp. 17-20.

    Article  Google Scholar 

  14. [14] Z.L. Ni, X.X. Wang, S. Li, and F.X. Ye: J. Manuf. Process., 2019, vol. 38, pp. 88-92.

    Article  Google Scholar 

  15. [15] J.S. Seo, H.S. Jang, and D.S. Park: Mater. Manuf. Process., 2015, vol. 30, pp. 1069-73.

    Article  CAS  Google Scholar 

  16. [16] M.B. Shahid, S.C. Han, T.S. Jun, and D.S. Park: Mater. Manuf. Process., 2019, vol. 34, pp. 1217-24.

    Article  CAS  Google Scholar 

  17. [17] I.E. Gunduz, T. Ando, E. Shattuck, P.Y. Wong, and C.C. Doumanidis: Scr. Mater., 2005, vol. 52, pp. 939-43.

    Article  CAS  Google Scholar 

  18. [18] M.R. Sriraman, S.S. Babua, and M. Short: Scr. Mater., 2010, vol. 62, pp. 560-63.

    Article  CAS  Google Scholar 

  19. [20] N. Sridharana, J. Poplawsky, A. Vivek, A. Bhattacharya, W. Guo, H. Meyer, Y. Mao, T. Lee, and G. Daehn: Mater. Charact., 2019, vol. 151, pp. 119-28.

    Article  Google Scholar 

  20. [21] K. Wang, S. Shang, Y. Wang, A. Vivek, G. Daehn, Z. Liu, and J. Li: Mater. Des., 2020, vol. 186, p. 108306.

    Article  CAS  Google Scholar 

  21. [22] B.C. Liu, A.N. Palazotto, A. Nassiri, A. Vivek, and G.S. Daehn: J. Mater. Sci., 2019, vol. 54, pp. 9824-42.

    Article  CAS  Google Scholar 

  22. [24] H. Paul, W. Skuza, R. Chulist, M. Miszczyk, A. Gałka, M. Prazmowski, and J. Pstruś: Metall. Mater. Trans. A, 2020, vol. 51, pp. 750-66.

    Article  Google Scholar 

  23. [25] T. Lee, A. Nassiri, T. Dittrich, A. Vivek, and G. Daehn: Scr. Mater., 2020, vol. 178, pp. 203-06.

    Article  CAS  Google Scholar 

  24. [26] T. Lee, M. Zhu, T. Dittrich, J. Hwang, A. Vivek, and G.S. Daehn: Metall. Mater. Trans. A, 2020, vol. 51, pp. 558-61.

    Article  Google Scholar 

  25. [27] V. Guptaa, T. Lee, A. Vivek, K.S. Choi, Y. Mao, X. Sun, and G. Daehn: J. Mater. Process. Technol., 2019, vol. 264, pp. 107-18.

    Article  Google Scholar 

  26. [28] A. Nassiri, T. Abke, and G. Daehn: Scr. Mater., 2019, vol. 168, pp. 61-66.

    Article  CAS  Google Scholar 

  27. [29] B. Liu, A. Vivek, M. Presley, and G.S. Daehn: Metall. Mater. Trans. A, 2018, vol. 49, pp. 899-907.

    Article  Google Scholar 

  28. [30] A. Nassiri, A. Vivek, T. Abke, B. Liu, T. Lee, and G. Daehn: Appl. Phys. Lett., 2017, vol. 110, p. 231601.

    Article  Google Scholar 

  29. [19] L. Lu, Y. Shen, X. Chen, L. Qian, and K. Lu: Science, 2004, vol. 304, pp. 422-26.

    Article  CAS  Google Scholar 

  30. [31] N.R. Tao and K. Lu: Scr. Mater., 2009, vol. 60, pp. 1039-43.

    Article  CAS  Google Scholar 

  31. [32] N. Sridharan, M. Gussev, R. Seibert, C. Parish, M. Norfolk, K. Terrani, and S.S. Babu: Acta Mater., 2016, vol. 117, pp. 228-37.

    Article  CAS  Google Scholar 

  32. [33] N. Sridharana, M.N. Gusseva, C.M. Parisha, D. Isheimb, D.N. Seidmanb, K.A. Terrania, and S.S. Babu: Mater. Charact., 2018, vol. 139, pp. 249-58.

    Article  Google Scholar 

  33. [34] N. Sridharan, P. Wolcott, M. Dapino, and S.S. Babu: Scr. Mater., 2016, vol. 117, pp. 1-5.

    Article  CAS  Google Scholar 

  34. [35] B.L. Adams, C. Nylander, B. Aydelotte, S. Ahmadi, C. Landon, B.E. Stucker, and G.D.J. Ram: Acta Mater., 2008, vol. 56, pp. 128-39.

    Article  CAS  Google Scholar 

  35. [36] K. Lu and N. Hansen: Scr. Mater., 2009, vol. 60, pp. 1033-38.

    Article  CAS  Google Scholar 

  36. [38] Z.L. Ni and F. X. Ye: Mater. Lett., 2016, vol. 185, pp. 204-07.

    Article  CAS  Google Scholar 

  37. [39] Z. Zhang, K. Wang, J. Li, Q. Yu, and W. Cai: Sci. Rep., 2017, vol. 7, p. 12505.

    Article  Google Scholar 

Download references

This work was funded by the National Natural Science Foundation of China (Grant Nos. 51905171, 51975406) and Henan Province Science and Technology Research and Development Project (Grant No. HNGD2020013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z. L. Ni or X. X. Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 2, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, Z.L., Yang, J.J., Wang, X.X. et al. Formation of Refined Grain Size Less Than 5 nm and Nano-sized Undulations in the Bonding Interface Region of an Ultrasonic Spot Welded Cu/Ni Joint. Metall Mater Trans A 51, 5606–5611 (2020). https://doi.org/10.1007/s11661-020-05956-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05956-1

Navigation