Skip to main content
Log in

Mechanism for Si Poisoning of Al-Ti-B Grain Refiners in Al Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Al-5Ti-1B is the most widely used grain refiner for Al alloys. However, it is not effective for grain refining Al alloys containing more than 3 wt pct Si. This adverse effect of Si is referred to as Si poisoning. In spite of extensive experimental and theoretical investigations in the past decades, the exact mechanism for Si poisoning is still not clear. In this work, the state-of-the-art electron microscopy was performed to investigate the mechanism for Si poisoning. Our experimental results suggest that Si segregates preferably to the TiB2/Al-Si melt interface and the pre-existing Al3Ti 2-dimensional compound (2DC) layer on TiB2 surface dissolves into the Al-Si melt. Based on the experimental results, we have postulated a new mechanism for Si poisoning: interfacial segregation of Si leads to enrichment of Si at the TiB2/Al-Si melt interface, and this in turn makes the pre-existing Al3Ti 2DC on the TiB2 surface unstable and dissolve gradually in the melt, resulting in a loss of TiB2 nucleation potency and hence a decreased total number of potent TiB2 particles available for heterogeneous nucleation and grain initiation and consequently an increased grain size. This mechanism for Si poisoning can explain consistently the experimentally observed phenomenon reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Cibula: J. Inst. Met., 1951–1952, vol. 80, pp 1–16.

  2. D.G. McCartney, Int. Mater. Rev., 1989, vol. 34, pp. 247-260.

    CAS  Google Scholar 

  3. M. Easton and D. StJohn, Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1613-1623.

    CAS  Google Scholar 

  4. B.S. Murty, S.A. Kori and M. Chakraborty, 2002, Int. Mater. Rev., vol. 47, pp. 3-47.

    CAS  Google Scholar 

  5. T.E. Quested, Mater. Sci. Tech., 2004, vol. 20, pp. 1357-1369.

    CAS  Google Scholar 

  6. L. Greer: J. Chem. Phys., 2016, vol. 145, pp. 211704.1–211704.14.

  7. M.A. Easton, M. Qian, A. Prasad, and D.H. StJohn, Curr. Opin. Solid State Mater. Sci., 2016, vol. 20, pp. 13-24.

    CAS  Google Scholar 

  8. Z. Fan, Y. Wang, Y. Zhang, T. Qin, X.R. Zhou, G.E. Thompson, T. Pennycook and T. Hashimoto, Acta Mater., 2015, vol. 84, pp. 292-304.

    CAS  Google Scholar 

  9. G.P. Jones and J. Pearson, Metall. Trans. B, 1976, vol. 7B, pp. 223-234.

    CAS  Google Scholar 

  10. A.A. Abdel-Hamid, Z. Metallkd., 1989, vol. 80, pp. 643-647.

    CAS  Google Scholar 

  11. M. Johnsson, Z. Metallkd. 1994, vol. 85, pp. 786-789.

    CAS  Google Scholar 

  12. J.A. Spittle and S. Sadli, Cast Metals, 1995, vol. 8, pp. 247-253.

    Google Scholar 

  13. A. ArjunaRao, B.S. Murty and M. Chakraborty, Mater. Sci. Technol., 1997, vol. 13, pp. 769-777.

    Google Scholar 

  14. M.A. Kearns, P. Cooper, Mater. Sci. Technol., 1997, vol. 13, pp. 650-654.

    CAS  Google Scholar 

  15. M.E.J. Birch, in: C. Baker, P.J. Gregson, S.J. Harris and C.J. Peers (eds.), Aluminium-lithium Alloys III, The Institute of Metals, London, 1986, pp. 152-158.

    Google Scholar 

  16. C.R. Chakravorty and M. Chakraborty, Cast Metals, 1991, vol. 4, pp. 98-100.

    Google Scholar 

  17. A. ArjunaRao, B.S. Murty and M. Chakraborty, Metall. Mater. Trans. A, vol. 27A, pp. 791-800 (1983)

    Google Scholar 

  18. A. ArjunaRao, B.S. Murty and M. Chakraborty, Int. J. Cast Met. Res., 1996, vol. 9, pp. 125-132.

    Google Scholar 

  19. J. A. Spittle, Inter. J Cast Metals Res., 2006, vol. 19, pp. 210-222.

    CAS  Google Scholar 

  20. G.K. Sigworth and M.M. Guzowaski, AFS Trans., 1985, vol. 93, pp. 907-912.

    CAS  Google Scholar 

  21. M. Johnsson, Z. Metallk., 1994, vol. 85, pp. 781-785.

    CAS  Google Scholar 

  22. M. Johnsson and L. Backerud, Z. Metallk., 1996, vol. 87, pp. 216-220.

    CAS  Google Scholar 

  23. P. Hoefs, W. Reif and W. Schneider, Giesserei, 1994, vol. 81, pp. 398-406.

    CAS  Google Scholar 

  24. M. Abdel-Reihim, N. Hess, W. Reif and M.E.J. Birch, J. Mater. Sci., vol. 22, pp. 213-218 (1987).

    CAS  Google Scholar 

  25. J.A. Spittle, J.M. Keeble, and M. Al Meshhedani: in Light Metals 1997, R. Huglen, ed., TMS, Warrendale PA, 1997, pp. 795–800.

  26. J.E.C. Hutt, D.H. StJohn, L. Hogan and A.K. Dahle, Mater. Sci. Technol., 1999, vol. 15, pp. 495-500.

    CAS  Google Scholar 

  27. L. Backerud and M. Johnsson: in Light Metals 1996, W. Hale, ed., TMS, Anaheim CA, 1996, pp. 679–85.

  28. M. Abdel-Reihim, N. Hess, W. Reif and M.E.J. Birch, J. Mater. Sci., 1987, vol. 22, pp. 213-218.

    CAS  Google Scholar 

  29. Y.C. Lee, A.K. Dahle, D.H. StJohn and J.E.C. Hutt, Mater. Sci. Eng. A, 1999, vol. 259, pp. 43-52.

    Google Scholar 

  30. Y. Birol, Inter. J. Cast Metals Res., 2013, vol. 26, pp. 22-27.

    CAS  Google Scholar 

  31. Y. Birol, Mater. Sci. Technol. 2012, vol. 28, pp. 385-389.

    CAS  Google Scholar 

  32. S.A. Kori, B.S. Murty and M. Chakraborty, Mater. Sci. Tech., 1999, vol. 15, pp. 986-992.

    CAS  Google Scholar 

  33. S.A. Kori, V. Auradi, B.S. Murty and M. Chakraborty, Mater. Forum, 2005, vol. 29, pp. 387-393.

    CAS  Google Scholar 

  34. A. Prasad, S.D. McDonald, H. Yasuda, K. Nogita and D.H. StJohn, J. Cryst. Growth, 2015, vol. 430, pp. 122-137.

    CAS  Google Scholar 

  35. D. Qiu, J.A. Taylor, M-X. Zhang and P.M. Kelly, Acta Mater. 2007, vol. 55, pp. 1447-1456.

    CAS  Google Scholar 

  36. Y. Wang, C.M. Fang, L. Zhou, T. Hashimoto, X. Zhou, Q.M. Ramasse and Z. Fan, Acta Mater., 2019, vol. 164, pp. 428-439.

    CAS  Google Scholar 

  37. P.S. Mohanty and J.E. Gruzleski, Acta Mater., 1996, vol. 44, pp. 3749-3760.

    CAS  Google Scholar 

  38. G.S.V. Kumar, B.S. Murty and M. Chakraborty, J. Alloys Compd., 2009, vol. 472, pp. 112-120.

    CAS  Google Scholar 

  39. T. Wang, H. Fu, Z. Chen, J. Xu, J. Zhu, F. Cao and T. Li, J. Alloys Compd., 2012, vol. 511, pp. 45-49.

    CAS  Google Scholar 

  40. Y. Birol, Mater. Sci. Technol., 2012, vol. 28, pp. 481-486.

    CAS  Google Scholar 

  41. S.A. Kori, B.S. Murty and B.S. Chakraborty, Mater. Sci. Eng. A, 2000, vol. 283, pp. 94-104.

    Google Scholar 

  42. L. Yu, X. Liu, Z. Wang and X. Bian, J. Mater. Sci., 2005, vol. 40, pp. 3865-3867.

    CAS  Google Scholar 

  43. H. Zhao, H. Bai, J. Wang and S. Guan, Mater. Charact., 2009, vol. 60, pp. 377-383.

    CAS  Google Scholar 

  44. P. Li, S. Liu, L. Zhang and X. Liu, Mater. Design, 2013, vol. 47, pp. 522-528.

    CAS  Google Scholar 

  45. Y. Birol, J. Alloys Compd. 2012, vol. 513, pp. 150-153.

    CAS  Google Scholar 

  46. Y. Birol, Mater. Sci. Tech., 2012, vol. 28, pp. 363-367.

    CAS  Google Scholar 

  47. Z. Chen, H. Kang, G. Fan, J. Li, Y. Lu, J. Jie, Y. Zhang, T. Li, X. Jian and T. Wang, Acta Mater., 2016, vol. 120, pp. 168-178.

    CAS  Google Scholar 

  48. M. Nowak, L. Bolzoni and N. HariBabu, Mater. Design, 2015, vol. 66, pp. 366-375.

    CAS  Google Scholar 

  49. L. Bolzoni, M. Nowak and N. HariBabu, Mater. Design, 2015, vol. 66, pp. 376-383.

    CAS  Google Scholar 

  50. L. Bolzoni and N. HariBabu, Metall. Mater. Trans. A, 2019, vol. 50A, pp. 746-756.

    Google Scholar 

  51. M.E.J. Birch, P. Fisher, in: T. Sheppard (ed.), Aluminium Technology 86, The Institute of Metals, London, 1986, pp. 117-124.

    Google Scholar 

  52. B.J. McKay: PhD Thesis, University of Oxford, Oxford, UK, 2001.

  53. B.J. McKay, P. Cizek, P. Schumacher and K.A.Q. O’Reilly, Mater. Sci. Eng. A, 2001, vol. 304-306, pp. 240-244.

    Google Scholar 

  54. P. Schumacher and B. J. McKay, J. Non-Cryst. Solids, 2003, vol. 317, pp. 123-128.

    CAS  Google Scholar 

  55. T.E. Quested, A.T. Dinsdale and A.L. Greer, Mater. Sci. Tech., 2006, vol. 22, pp. 1126-1134.

    CAS  Google Scholar 

  56. P.S. Cooper, A. Hardman, D. Boot and E. Burhop, in: P. Crepeau (ed.), Light Metals 2003, TMS, Warrendale PA, 2003, pp. 923-928.

    Google Scholar 

  57. T.E. Quested, A.T. Dinsdale and A.L. Greer, Acta Mater., 2005, vol. 53, pp. 1323-1334.

    CAS  Google Scholar 

  58. M. Johnsson, Thermochim. Acta, 1995, vol. 256, pp. 107-121.

    CAS  Google Scholar 

  59. J.E.C. Hutt, A.K. Dahle, Y.C. Lee and D.H. StJohn, in: C.E. Eckert (ed.), Light Metals 1999, TMS, Warrendale PA, 1999, pp. 685-692.

    Google Scholar 

  60. W. Khalifa, F. H. Samuel and J. E. Gruzleski, Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3233-3250.

    CAS  Google Scholar 

  61. M.A. Easton, A. Prasad and D.H. StJohn, Mater. Sci. Forum, 2014, vol. 794-796, pp. 161-166.

    Google Scholar 

  62. Standard Test Procedure for Aluminum Alloy Grain Refiners (TP-1), The Aluminum Association, Washington, DC, 1990.

  63. Z. Fan, Y. Wang, M. Xia and S. Arumuganathar, Acta Mater., 2009, vol. 57, pp. 4891-4901.

    CAS  Google Scholar 

  64. Y. Wang, Z. Fan, X. Zhou and G.E. Thompson, Phil. Mag. Lett., 2011, vol. 91, pp. 516-529.

    CAS  Google Scholar 

  65. A.L. Greer, A.M. Bunn, A. Tronche, P.V. Evans and D.J. Bristow, Acta Mater., 2000, vol. 48, pp. 2823-2835.

    CAS  Google Scholar 

  66. P. Schumacher and A.L. Greer, Mater. Sci. Eng. A, 1994, vol. A178, pp. 309-313.

    Google Scholar 

  67. P. Schumacher and A.L. Greer, Mater. Sci. Eng. A, 1994, vol. A181/A182, pp. 1335-1339.

    Google Scholar 

  68. H. Men and Z. Fan, Metall. Mater. Trans. A, 2018, vol. 49, pp. 2766-2777.

    Google Scholar 

  69. L. Wang and R.J. Arsenault, Metall. Trans. A, 1991, vol. 22A, pp. 3013-3018.

    CAS  Google Scholar 

  70. E. Hondros, M. Seah, S. Hofmann and P. Lejcek, in: R. Cahn, P. Haasen (eds.), Physical Metallurgy, North-Holland, Amsterdam, 1996, pp. 1201-1289.

    Google Scholar 

  71. J.W. Christian, The Theory of Transformations in Metals and Alloys, 3rd ed., Pergamon, Oxford, 2002.

    Google Scholar 

  72. B. Cantor, Philos. Trans. R. Soc. London. A, 2003, vol. 361, pp. 409-417.

    CAS  Google Scholar 

  73. Z. Fan, Metall. Mater. Trans. A, 2013, vol. 44A, pp. 1409-1418.

    Google Scholar 

  74. H. Men and Z. Fan, Metall. Mater. Trans. A, 2014, vol. 45A, pp. 5508-5516.

    Google Scholar 

  75. W.B. Pearson, A Handbook of Lattice Spacings and Structures of Metals and Alloys, Pergamon Press, London 1958, p. 382.

    Google Scholar 

Download references

Acknowledgments

The EPSRC is gratefully acknowledged for providing financial support under grant number EP/N007638 /1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongyun Fan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 24, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Que, Z., Hashimoto, T. et al. Mechanism for Si Poisoning of Al-Ti-B Grain Refiners in Al Alloys. Metall Mater Trans A 51, 5743–5757 (2020). https://doi.org/10.1007/s11661-020-05950-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05950-7

Navigation