Skip to main content

Strain-Rate Dependence of the Martensitic Transformation Behavior in a 10 Pct Ni Multi-phase Steel Under Compression

Abstract

The deformation-induced transformation of metastable austenite to martensite can contribute to improved performance of many steel alloys in a range of applications. For example, one class of Ni-containing steels that has undergone consecutive heat treatments of quenching (Q), lamellarization (L), and tempering (T) exhibits improved ballistic resistance and low-temperature impact toughness. To better understand the origin of this improvement, we tracked the volume fraction of austenite present in a QLT 10 wt pct Ni steel during compression at low and high strain rates (\(\dot{\varepsilon }={0.001}\,{{\text{s}}^{-1}}\) and \(\dot{\varepsilon }\simeq {2500}\,{{\text{s}}^{-1}}\), respectively) using ex situ vibrating sample magnetometry measurements and in situ time-resolved X-ray diffraction measurements. We observe that the austenite-to-martensite transformation occurs more readily during quasi-static loading than during dynamic loading, even at small values of applied strain, which is qualitatively different from the behavior of steels known to undergo a strain-induced martensitic transformation mechanism. We propose that the strain-rate dependence of transformation in the QLT 10 pct Ni steel is dominated by the transformation in small austenite particles, where stress-assisted martensitic transformation is likely to be the dominant mechanism. Indirect evidence for this hypothesis is provided by electron backscatter diffraction measurements of deformed specimens.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Patel, M. Cohen: Acta Metallurgica 1953, vol. 1 (5), pp. 531–538.

    CAS  Google Scholar 

  2. G. B. Olson, M. Cohen: J. Less Common Met. 1972, vol. 28 (1), pp. 107–118.

    CAS  Google Scholar 

  3. G. B. Olson, M. Cohen: Metallurgical and Materials Transactions A-Phys. Metall. Mater. Sci. 1976, vol. 7 (12), pp. 1905–1914.

    Google Scholar 

  4. F. Lani, Q. Furnemont, T. Van Rompaey, F. Delannay, P. J. Jacques, and T. Pardoen: Acta Mater., vol. 55 (11), pp. 3695–3705 (2007).

    CAS  Google Scholar 

  5. D. Isheim, A.H. Hunter, X.J. Zhang, D.N. Seidman: Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., vol. 44A (7), pp. 3046–3059 (2013).

    Google Scholar 

  6. C. C. Kinney, K. R. Pytlewski, A. G. Khachaturyan, J. W. Morris, Jr.: Acta Mater. 2014, vol. 69, pp. 372–385.

    CAS  Google Scholar 

  7. E. Machlin, M. Cohen: Trans. Am. Inst. Mining and Metallurgical Engineers 1951, vol. 191 (11), pp. 1019–1029.

    Google Scholar 

  8. G. F. Bolling, R. H. Richman: Acta Metallurgica 1970, vol. 18, pp. 673–681.

    CAS  Google Scholar 

  9. J. Kim and J. Morris: Metall. Trans. A-Phys. Metall. Mater. Sci., 1981, vol. 12 (11).

  10. S.J. Wu, G.J. Sun, Q.S. Ma, Q.Y. Shen, L. Xu: Journal of Materials Processing Technology, vol. 213 (1), pp. 120–128 (2013).

    CAS  Google Scholar 

  11. X. Q. Zhao, T. Pan, Q. F. Wang, H. Su, C. F. Yang, Q. X. Yang, Y. Q. Zhang: Journal of Iron and Steel Research International 2007, vol. 14 (1), pp. 240–244.

    Google Scholar 

  12. T. Kobayashi, H. Tachibana, W. Yagi, Y. Ueda: Journal of the Japan Institute of Metals 1982, vol. 46 (4), pp. 433–440.

    CAS  Google Scholar 

  13. H. Kim, Y. Kim, J. Morris: ISIJ International 1998, vol. 38 (11), pp. 1277–1285.

    CAS  Google Scholar 

  14. J.H. Kim, C. Syn, J. Morris: Metallurgical Transactions A-Physical Metallurgy and Materials Science, vol. 14 (1), pp. 93–103 (1983).

    CAS  Google Scholar 

  15. Z. Guo, J. Morris: Scr. Mater., vol. 53 (8), pp. 933–936 (2005).

    CAS  Google Scholar 

  16. B. Fultz, J. Kim, Y. Kim, J. Morris: Metallurgical Transactions A-Physical Metallurgy and Materials Science, vol. 17 (6), pp. 967–972 (1986).

    Google Scholar 

  17. B. Fultz, J. Kim, Y. Kim, H. Kim, G. Fior, J. Morris: Metallurgical Transactions A-Physical Metallurgy and Materials Science 1985, vol. 16 (12), pp. 2237–2249.

    Google Scholar 

  18. J.W. Morris, Jr., C. Kinney, K. Pytlewski, Y. Adachi: Sci. Technol. Adv. Mater., 2013, vol. 14 (1).

  19. P. Wang, K. S. Kumar: , Mater. Sci. Eng. A: Struct. Mater.: Properties Microstruct. Process. 2009, vol. 519 (1-2), pp. 184–197.

    Google Scholar 

  20. S. H. Chen, M. J. Zhao, X. Y. Li, L. J. Rong: J. Mater. Sci. Technol. 2012, vol. 28 (6), pp. 558–561.

    CAS  Google Scholar 

  21. B. Fultz, J. Morris: Metallurgical Transactions A-Physical Metallurgy and Materials Science, vol. 16 (12), pp. 2251–2256 (1985).

    Google Scholar 

  22. B. Fultz, J. Morris: Metallurgical Transactions A-Physical Metallurgy and Materials Science 1985, vol. 16 (2), pp. 173–177.

    Google Scholar 

  23. X. Zhao, T. Pan, Q. Wang, H. Su, C. Yang, Q. Yang: J. Iron Steel Res. Int., vol. 18 (5), 47 (2011)

    CAS  Google Scholar 

  24. R. Fonda, G. Spanos: Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 2014, vol. 45A (13), pp. 5982–5989.

    Google Scholar 

  25. N. Nakada, J. Syarif, T. Tsuchiyama, S. Takaki: , Microstructure and Processing 2004, vol. 374 (1-2), pp. 137–144.

    Google Scholar 

  26. C. Syn, S. Jin, J. Morris: Metallurgical Transactions A-Physical Metallurgy and Materials Science 1976, vol. 7 (12), pp. 1827–1832.

    Google Scholar 

  27. D. Delagnes, F. Pettinari-Sturmel, M. Mathon, R. Danoix, F. Danoix, C. Bellot, P. Lamesle, A. Grellier: Acta Materialia 2012, vol. 60 (16), pp. 5877–5888.

    CAS  Google Scholar 

  28. H. Na, S. Nambu, M. Ojima, J. Inoue, T. Koseki: Science 2014, vol. 45A (11), pp. 5029–5043.

    Google Scholar 

  29. T. Pan, J. Zhu, H. Su, C.-F. Yang: Rare Metals 2015, vol. 34 (11), pp. 776–782.

    CAS  Google Scholar 

  30. L. M. Dougherty, E. K. Cerreta, G. T. Gray III, C. P. Trujillo, M. F. Lopez, K. S. Vecchio, G. J. Kusinski: Metall. Mater. Trans. A 2009, vol. 40A, pp. 1835–1850.

    CAS  Google Scholar 

  31. W. Dabboussi, J. A. Nemes: ISIJ Int. 2013, vol. 53 (8), pp. 1462–1470.

    CAS  Google Scholar 

  32. S. Oliver, T. Jones, G. Fourlaris: Mater. Characterization 2007, vol. 58 (4), pp. 390–400.

    CAS  Google Scholar 

  33. X. J. Zhang: Mater. Sci. Technol. 2012, vol. 28 (7), pp. 818–822.

    Google Scholar 

  34. D. Jain, D. Isheim, X. Zhang, G. Ghosh, D. N. Seidman: Metall. Mater. Trans. A 2017, vol. 48A, pp. 3642–3654.

    Google Scholar 

  35. C. Syn, B. Fultz, and J. Morris: Metall. Trans. A 1978, , pp. 1635–1640.

  36. G. B. Olson, M. Cohen: Metallurgical Transactions A-Physical Metallurgy and Materials Science 1982, vol. 13 (11), pp. 1907–1914.

    CAS  Google Scholar 

  37. S. S. Hecker, M. G. Stout, K. P. Staudhammer, J. L. Smith: Metallurgical Transactions A-Physical Metallurgy and Materials Science 1982, vol. 13 (4), pp. 619–626.

    CAS  Google Scholar 

  38. P. Nowakowski, J. Schlenker, M. Ray, P. Fischione: Microsc. Microanal. 2016, vol. 22 (S3), pp. 12–13.

    Google Scholar 

  39. W. Chen, B. Song: Split Hopkinson (Kolsky) Bar: Design, Testing, and Applications, Springer, Berlin, 2011.

    Google Scholar 

  40. G. B. Olson, M. Cohen: Metallurgical Transactions 1975, vol. A6 (4), pp. 791–795.

    Google Scholar 

  41. P.K. Lambert, C.J. Hustedt, K.S. Vecchio, E.L. Huskins, D.T. Casem, S.M. Gruner, M.W. Tate, H.T. Philipp, A.R. Woll, P. Purohit, J.T. Weiss, V. Kannan, K.T. Ramesh, P. Kenesei, J. S. Okasinski, J. Almer, M. Zhao, A. G. Ananiadis, and T.C. Hufnagel: Rev. Sci. Instrum., 2014, vol. 85 (9), p. 093901

  42. C. J.Hustedt, P. Lambert, V. Kannan, E. Huskins-Retzlaff, D. Casem, M. Tate, H. Philipp, A. Woll, P. Purohit, J. Weiss, S. Gruner, K. Ramesh, and T. Hufnagel: Journal of Dynamic Behavior of Materials 2018, vol. 4 (2), pp. 222–230.

    Google Scholar 

  43. S.N. Luo, B.J. Jensen, D.E. Hooks, K. Fezzaa, K.J. Ramos, J.D. Yeager, K. Kwiatkowski, and T. Shimada: Rev. Sci. Instrum., 2012, vol. 83 (7), p. 073903.

  44. K. Goetze, U. Lienert: A galvanometer based fast shutter. Presented at 10th International Conference on Synchrotron Radiation Instrumentation, Melbourne, Australia 27 September–2 October 2009.

  45. S. T. Kelly, J. C. Trenkle, L. J. Koerner, S. C. Barron, N. Walker, P. O. Pouliquen, M. W. Tate, S. M. Gruner, E. M. Dufresne, T. P. Weihs, T. C. Hufnagel: J. Synchrotron Radiation 2011, vol. 18 (3), pp. 464–474.

    Google Scholar 

  46. T. Gnaeupel-Herold, A. Creuziger: Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, vol. 528 (10-11), pp. 3594–3600 (2011).

    Google Scholar 

  47. S. Mohanlal: Journal of Physics C-Solid State Physics 1979, vol. 12 (17), pp. L651–L653.

    CAS  Google Scholar 

  48. L. Alexander: X-ray Diffraction Methods in Polymer Science. Wiley-Interscience, New York, 1969.

    Google Scholar 

  49. C. Li, L. Han, X. Luo, Q. Liu, J. Gu: Journal of Microscopy 2016, vol. 264 (2), pp. 252–258.

    CAS  Google Scholar 

  50. L. Fan, D. Zhou, T. Wang, S. Li, Q. Wang: , Microstructure and Processing 2014, vol. 590, pp. 224–231.

    CAS  Google Scholar 

  51. N. Nakada, T. Tsuchiyama, S. Takaki, S. Hashizume: ISIJ International 2007, vol. 47 (10), pp. 1527–1532.

    CAS  Google Scholar 

  52. D. Steinmetz, S. Zaefferer: Materials Science and Technology 2010, vol. 26 (6), pp. 640–645.

    CAS  Google Scholar 

  53. P. Hëdstrom, L. Lindgren, J. Almer, U. Lienert, J. Bernier, M. Terner, M. Odén: Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 2009, vol. 40A (5), pp. 1039–1048.

    Google Scholar 

  54. J. Talonen, H. Hanninen: Acta Mater. 2007, vol. 55 (18), pp. 6108–6118.

    CAS  Google Scholar 

  55. H.-W. Yen, S. Ooi, M. Eizadjou, A. Bree, C.-Y. Huang, H. Bhadeshia, S. Ringer: Acta Mater. 2015, vol. 82, pp. 100–114.

    CAS  Google Scholar 

  56. M.-M. Wang, C. Tasan, D. Ponge, A. Kostka, D. Raabe: Acta Mater. 2014, vol. 79, pp. 268–281.

    CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Dr. Nicholas Jones for assistance with the VSM measurements. PKL acknowledges OSD-T&E (Office of Secretary Defense-Test and Evaluation), Defense-Wide/PE0601120D8Z National Defense Education Program (NDEP)/BA-1, Basic Research, for financial support of this work. CJH, AFTL, and TCH gratefully acknowledge support from the Army Research Laboratory under Cooperative Agreement No. W911NF-12-2-0022. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Laboratory or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein. TCH acknowledges additional support from the Department of the Navy, Office of Naval Research under ONR Award Number N00014-18-1-2604. XJZ gratefully acknowledges support from this research through Dr. W.M. Mullins, Program Manager of the Office of Naval Research, Structural Metals Naval Materials Science and Technology, is greatly appreciated. This publication is based upon work performed at the Dynamic Compression Sector supported by the Department of Energy, National Nuclear Security Administration, under Award Number DE-NA0002442 and operated by Washington State University. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. C. Hufnagel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted March 9, 2020.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lambert, P.K., Hustedt, C.J., Casem, D.T. et al. Strain-Rate Dependence of the Martensitic Transformation Behavior in a 10 Pct Ni Multi-phase Steel Under Compression. Metall Mater Trans A 51, 5101–5109 (2020). https://doi.org/10.1007/s11661-020-05913-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05913-y