Skip to main content
Log in

In Situ Analysis of the Thermal Evolution of Electrodeposited Fe-C Coatings

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Fe-C coatings with a high amount of carbon were electrodeposited from an iron-sulfate electrolyte. Citric acid as an additive in the electrolyte not only served as a carbon source during electrodeposition but also caused the reproducible codeposition of oxygen and hydrogen. The various codeposited elements (C, O, H) result in the complex nature of the as-deposited coatings and allow for deliberate alterations of the coating properties by postdeposition annealing. The thermal evolution of electrodeposited Fe-C coatings was investigated in situ during isochronal annealing. In situ synchrotron diffraction analysis revealed temperature-dependent phase transformations, which were supplemented with in situ thermal analysis for investigating the evolution of codeposited elements and associated mass changes during annealing. Based on the determined activation energies of identified thermal events, the underlying mechanisms are discussed. The results clearly indicate the role of codeposited elements in the coatings and suggest that they partly exist in the form of organic compounds, which decompose during annealing. In addition to revealing the thermal stability of the coatings and quantifying the coatings’ thermal evolution, the complementary methods of in situ analysis considerably improved the understanding of the as-deposited Fe-C coatings—both are essential prerequisites for the successful application of the Fe-C coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. M. Izaki, H. Enomoto, and T. Omi: J. Surf. Fin. Soc. Jpn., 1989, vol. 40, pp. 1304–05.

    Article  CAS  Google Scholar 

  2. Y. Fujiwara, T. Nagayama, A. Nakae, M. Izaki, H. Enomoto, and E. Yamauchi: J. Electrochem. Soc., 1996, vol. 143, pp. 2584–90.

    Article  CAS  Google Scholar 

  3. M. Panayotova: Surf. Coat. Technol., 2000, vol. 124, pp. 266–71.

    Article  CAS  Google Scholar 

  4. A.S.M.A. Haseeb, Y. Hayashi, M. Masuda, and M. Arita: Metall. Mater. Trans. B, 2002, vol. 33B, pp. 921–27.

    Article  CAS  Google Scholar 

  5. T. Müller, J. Grimwood, A. Bachmaier, and R. Pippan: Metals, 2018, vol. 8, pp. 363–75.

    Article  Google Scholar 

  6. J.O. Nielsen, P. Møller, and K. Pantleon: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 3785–93.

    Article  Google Scholar 

  7. J.O. Nielsen and K. Pantleon: Surf. Eng., 2019. https://doi.org/10.1080/02670844.2019.1675305.

  8. M. Izaki, H. Enomoto, A. Nakae, S. Terada, Y. Eiko, and T. Omi: J. Surf. Fin. Soc. Jpn., 1994, vol. 45, pp. 1303–09.

    Article  Google Scholar 

  9. A.S.M.A. Haseeb, M. Arita, and Y. Hayashi: J. Mater. Sci., 2001, vol. 6, pp. 4739–43.

    Article  Google Scholar 

  10. Schlesinger M, Paunovic M (2010) In: Izaki M (ed) Modern Electroplating, 5th edn. Wiley, Hoboken, pp 309–26

    Chapter  Google Scholar 

  11. Y. Fujiwara, M. Izaki, H. Enomoto, and A. Nakae: Denki Kagaku, 1993, vol. 61, pp. 840–42.

    Article  CAS  Google Scholar 

  12. A.S.M.A. Haseeb and M.Z. Huq: Met. Finishing, 1997, vol. 95, pp. 30–34.

    Article  CAS  Google Scholar 

  13. N. Fukumuro, S. Kojima, M. Fujino, Y. Mizuta, T. Maruo, S. Yae, and Y. Fukai: J. Alloys Compd., 2015, vol. 645, pp. 404–07.

    Article  Google Scholar 

  14. Y. Fujiwara, M. Izaki, H. Enomoto, T. Nagayama, E. Yamauchi, and A. Nakae: J. Appl. Electrochem., 1998, vol. 28, pp. 855–62.

    Article  CAS  Google Scholar 

  15. M. Izaki and T. Omi: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 483–86.

    Article  CAS  Google Scholar 

  16. C. Genzel, I.A. Denks, J. Gibmeier, M. Klaus, and G. Wagener: Nucl. Instrum. Meth. Phys. Res. A, 2007, vol. 578, pp. 23–33.

    Article  CAS  Google Scholar 

  17. E.J. Mittemeijer: J. Mater. Sci., 1992, vol. 27, pp. 3977–87.

    Article  CAS  Google Scholar 

  18. W.Y. Choo and J.Y. Lee: Metall. Trans. A, 1982, vol. 13A, pp. 135–40.

    Article  CAS  Google Scholar 

  19. L. Cheng, C.M. Brakman, B.M. Korevaar, and E.J. Mittemeijer: Metall. Trans. A, 1988, vol. 19A, pp. 2415–26.

    Article  CAS  Google Scholar 

  20. Bhadeshia HKDH (2015) Bainite Steels Theory Practice, 3rd edn. Maney Publishing, Leeds, pp 61–86

    Google Scholar 

  21. H.L. Yakel: Int. Met. Rev., 1985, vol. 30, pp. 17–40.

    Article  CAS  Google Scholar 

  22. U. Schwertmann and W.R. Fischer: Geoderma, 1973, vol. 10, pp. 237–47.

    Article  CAS  Google Scholar 

  23. E. Jansen, A. Kyek, W. Schäfer, and U. Schwertmann: Appl. Phys. A, 2002, vol. 74, pp. 1004–06.

    Article  Google Scholar 

  24. S. Das, M.J. Hendry, and J. Essilfie-Dughan: Environ. Sci. Technol., 2010, vol. 45, pp. 268–75.

    Article  Google Scholar 

  25. R.M. Cornell and U. Schewertmann: Iron Oxides: Structures, Properties, Reactions, Occurrences and Uses, 2nd ed., Wiley, Hoboken, NJ, 2003, pp. 433–68.

    Book  Google Scholar 

  26. M. Panunovic and M. Schlesinger: Fundamentals of Electrochemical Deposition, Wiley, Hoboken, NJ, 2006, pp. 139–68.

    Book  Google Scholar 

  27. A.S. Campbell, U. Schwertmann, and P.A. Campbell: Clay Miner., 1997, vol. 32, pp. 615–22.

    Article  CAS  Google Scholar 

  28. X. Yu, Z. Jiang, J. Zhao, D. Wei, and C. Zhou: Appl. Mech. Mater., 2013, vols. 395–396, pp. 273–78.

    Article  Google Scholar 

Download references

Acknowledgments

The authors kindly acknowledge the financial support by OCAS NV, ArcelorMittal Global R&D Gent (Belgium), a. h. nichro Haardchrom (Denmark), and Fast Track-Societal Partnership (Denmark), funded by the Innovation Fund Denmark. M. Klaus, D. Apel, and C. Genzel from Helmholtz Zentrum für Materialien und Energie (Germany) are acknowledged for their valuable support during beamtime at the HZB-BESSY II Synchrotron Facility and during subsequent data analysis. Synchrotron diffraction measurements were financially supported by the project CALIPSOplus under Grant Agreement 730872 from the EU Framework Programme for Research and Innovation HORIZON 2020 and by the Danish Natural Science Research Council via Danscatt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen Pantleon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 1, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nielsen, J.O., Christiansen, T.L. & Pantleon, K. In Situ Analysis of the Thermal Evolution of Electrodeposited Fe-C Coatings. Metall Mater Trans A 51, 4880–4889 (2020). https://doi.org/10.1007/s11661-020-05904-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05904-z

Navigation