Skip to main content

Advertisement

Log in

Highly Ductile Zn-2Fe-WC Nanocomposite as Biodegradable Material

  • Topical Collection: Biodegradable Materials for Medical Applications II
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Zinc (Zn) has been widely investigated as a biodegradable metal for orthopedic implants and vascular stents due to its ideal corrosion in vivo and biocompatibility. However, pure Zn lacks adequate mechanical properties for load-bearing applications. Alloying elements, such as iron (Fe), have been shown to improve the strength significantly, but at the cost of compromised ductility and corrosion rate. In this study, tungsten carbide (WC) nanoparticles were incorporated into the Zn-2Fe alloy system for strengthening, microstructure modification, and ductility enhancement. Thermally stable WC nanoparticles modified the intermetallic \( \zeta \)-FeZn13 interface morphology from faceted to non-faceted. Consequently, WC nanoparticles simultaneously enhance mechanical strength and ductility while maintaining a reasonable corrosion rate. Overall, this novel Zn-Fe-WC nanocomposite could be used as biodegradable material for biomedical applications where pure Zn is inadequate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Heiden, E. Walker and L. Stanciu: J. Biotechnol. Biomater., 2015, vol. 5, pp. 1–9.

    Google Scholar 

  2. P.K. Bowen, J. Drelich and J. Goldman: Adv. Mater., 2013, vol. 25, pp. 2577-82.

    Article  CAS  Google Scholar 

  3. S. Thomas, N.V. Medhekar, G.S. Frankel and N. Birbilis: Curr. Opin. Solid. State. Mater. Sci., 2015, vol. 19, pp. 85-94.

    Article  CAS  Google Scholar 

  4. E. Mostaed, M. Sikora-Jasinska, A. Mostaed, S. Loffredo, A. Demir, B. Previtali, D. Mantovani, R. Beanland and M. Vedani: J. Mech. Behav. Biomed., 2016, vol. 60, pp. 581-602.

    Article  CAS  Google Scholar 

  5. E. Mostaed, M. Sikora-Jasinska, J.W. Drelich and M. Vedani: Acta. Biomater., 2018, vol. 71, pp. 1-23.

    Article  CAS  Google Scholar 

  6. X. Liu, J. Sun, Y. Yang, Z. Pu and Y. Zheng: Mater. Lett., 2015, vol. 161, pp. 53-56.

    Article  CAS  Google Scholar 

  7. P.K. Bowen, E.R. Shearier, S. Zhao, R.J. Guillory, F. Zhao, J. Goldman and J.W. Drelich: Adv. Healthc. Mater., 2016, vol. 5, pp. 1121-40.

    Article  CAS  Google Scholar 

  8. B. Liu and Y. Zheng: Acta. Biomater., 2011, vol. 7, pp. 1407-20.

    Article  CAS  Google Scholar 

  9. D. Vojtech, J. Kubasek, J. Capek and I. Pospisilova: Mater. Technol., 2015, vol. 49, pp. 877-82.

    CAS  Google Scholar 

  10. R. Waksman, R. Pakala, R. Baffour, R. Seabron, D. Hellinga and F.O. Tio: J. Interv. Cardiol., 2008, vol. 21, pp. 15-20.

    Article  Google Scholar 

  11. A. Kafri, S. Ovadia, J. Goldman, J. Drelich and E. Aghion: Metals, 2018, vol. 8, pp. 1–15.

    Article  Google Scholar 

  12. A. Kafri, S. Ovadia, G. Yosafovich-Doitch and E. Aghion: J. Mater. Sci. Mater. Med., 2018, vol. 29, pp. 1–8.

    Article  CAS  Google Scholar 

  13. F.C. Porter: Zinc handbook: properties, processing, and use in design. (CRC Press, Boca Raton, 1991).

    Book  Google Scholar 

  14. J. Culcasi, P. Sere, C. Elsner and A. Di Sarli: Surf. Coat. Technol., 1999, vol. 122, pp. 21-23.

    Article  CAS  Google Scholar 

  15. D.L. Jones and L.V. Kochian: FEBS. Lett., 1997, vol. 400, pp. 51-57.

    Article  CAS  Google Scholar 

  16. Cao, G. Yao, L. Jiang, M. Sokoluk, X. Wang, J. Ciston, A. Javadi, Z. Guan, I. De Rosa and W. Xie: Sci. Adv., 2019, 5, 2398

    Article  Google Scholar 

  17. S. Cheng, Y. Zhao, Y. Zhu and E. Ma: Acta. Mater., 2007, vol. 55, pp. 5822-32.

    Article  CAS  Google Scholar 

  18. S. Bastian, W. Busch, D. Kühnel, A. Springer, T. Meißner, R. Holke, S. Scholz, M. Iwe, W. Pompe and M. Gelinsky: Environ. Health Perspect., 2009, vol. 117, pp. 530-36.

    Article  CAS  Google Scholar 

  19. J.C. Hamilton, D.J. Siegel, I. Daruka and F. Léonard: Phy. Rev. Lett., 2003, vol. 90, art. no. 246102.

    Article  CAS  Google Scholar 

  20. W. Sigle, L.-S. Ciiang and W. Gusr: Phil. Mag. A, 2002, vol. 82, pp. 1595-608.

    Article  CAS  Google Scholar 

  21. Z. Guan, S. Pan, C. Linsley and X. Li: Procedia Manuf., 2019, vol. 34, pp. 247-51.

    Article  Google Scholar 

  22. S.C. Tjong: Adv. Eng. Mater., 2007, vol. 9, pp. 639-52.

    Article  CAS  Google Scholar 

  23. D. Zhou, F. Qiu and Q. Jiang: Mater. Sci. Eng. A, 2015, vol. 622, pp. 189-93.

    Article  CAS  Google Scholar 

  24. H. Yang, B. Jia, Z. Zhang, X. Qu, G. Li, W. Lin, D. Zhu, K. Dai, and Y.Zheng: Nat. Comm., 2020, vol. 11, pp. 1-16.

    CAS  Google Scholar 

Download references

Acknowledgments

The research reported in this publication was supported by the National Heart, Lung, And Blood Institute of the National Institutes of Health under Award Number R01HL143465. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaochun Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 3, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, Z., Linsley, C.S., Pan, S. et al. Highly Ductile Zn-2Fe-WC Nanocomposite as Biodegradable Material. Metall Mater Trans A 51, 4406–4413 (2020). https://doi.org/10.1007/s11661-020-05878-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05878-y

Navigation