Prediction of Generation of High- and Low-Angle Grain Boundaries (HAGB and LAGB) During Severe Plastic Deformation

Abstract

It is well known that a balance between the generation of low-angle and high-angle grain boundaries (LABG and HAGB) is achieved in materials undergoing a severe plastic deformation (SPD) process. It is also observed that most annealed materials evolve from a substantial fraction of LAGB at the early deformation steps towards a steady state in which an equilibrium between LAGB and HAGB fractions is attained. In the present work, such a balance is analyzed for different alloys, i.e., Cu, Al, and Fe based. A mathematical expression is proposed for the amount of LAGB and HAGB as a function of the strain impaired which in turn can be used to predict the number of passes (especially for ECAP) or the amount of total deformation for any SPD process necessary to attain a steady microstructure. The model seeks to serve as a first approximation of the mechanical and microstructural properties of ultrafine grain metal materials.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    1 R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett: Mater. Sci. Eng. A, 1997, vol. 238, pp. 219–74.

    Google Scholar 

  2. 2.

    2 J. Tarasiuk, P. Gerber, and B. Bacroix: Acta Mater., 2002, vol. 50, pp. 1467–77.

    CAS  Google Scholar 

  3. 3.

    3 R. Kapoor, G.B. Reddy, and A. Sarkar: Mater. Sci. Eng. A, 2018, vol. 718, pp. 104–10.

    CAS  Google Scholar 

  4. 4.

    4 D.G. Cram, H.S. Zurob, Y.J.M. Brechet, and C.R. Hutchinson: Acta Mater., 2009, vol. 57, pp. 5218–28.

    CAS  Google Scholar 

  5. 5.

    5 K. Huang and R.E. Logé: Mater. Des., 2016, vol. 111, pp. 548–74.

    CAS  Google Scholar 

  6. 6.

    6 F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, (Reprinted with Corrections), Pergamon/Elsevier Science, Oxford, 1996.

    Google Scholar 

  7. 7.

    7 N. Xiao, P. Hodgson, B. Rolfe, and D. Li: Comput. Mater. Sci., 2018, vol. 155, pp. 298–311.

    CAS  Google Scholar 

  8. 8.

    8 E.I. Galindo-Nava and P.E.J. Rivera-Díaz-del-Castillo: Scr. Mater., 2014, vol. 72–73, pp. 1–4.

    Google Scholar 

  9. 9.

    9 T. Sakai, H. Miura, and X. Yang: Mater. Sci. Eng. A, 2009, vol. 499, pp. 2–6.

    Google Scholar 

  10. 10.

    10 J. Driver: Mater. Lett., 2018, vol. 222, pp. 135–37.

    CAS  Google Scholar 

  11. 11.

    11 M. Bacca, D.R. Hayhurst, and R.M. McMeeking: Mech. Mater., 2015, vol. 90, pp. 148–56.

    Google Scholar 

  12. 12.

    Y. Estrin, L.S. Tóth, Y. Bréchet, and H.S. Kim: in Nanomaterials by Severe Plastic Deformation, vol. 503, Trans Tech Publications Ltd, 2006, pp. 675–80.

  13. 13.

    13 B. Bay, N. Hansen, D.A. Hughes, and D. Kuhlmann-Wilsdorf: Acta Metall. Mater., 1992, vol. 40, pp. 205–19.

    CAS  Google Scholar 

  14. 14.

    14 Y. Tomita and K. Okabayashi: Metall. Trans. A, 1985, vol. 16, pp. 865–72.

    Google Scholar 

  15. 15.

    15 R.Z. Valiev, R.K. Islamgaliev, and I. V Alexandrov: Prog. Mater. Sci., 2000, vol. 45, pp. 103–89.

    CAS  Google Scholar 

  16. 16.

    16 R. Lapovok, P.F. Thomson, R. Cottam, and Y. Estrin: J. Mater. Sci., 2005, vol. 40, pp. 1699–6708.

    CAS  Google Scholar 

  17. 17.

    17 M. Zehetbauer, T. Ungár, R. Kral, A. Borbély, E. Schafler, B. Ortner, H. Amenitsch, and S. Bernstorff: Acta Mater., 1999, vol. 47, pp. 1053–61.

    CAS  Google Scholar 

  18. 18.

    18 W. Pantleon: Mater. Sci. Eng. A, 2004, vol. 387–389, pp. 257–61.

    Google Scholar 

  19. 19.

    19 S. Gourdet and F. Montheillet: Acta Mater., 2003, vol. 51, pp. 2685–99.

    CAS  Google Scholar 

  20. 20.

    20 H. Hallberg, M. Wallin, and M. Ristinmaa: Mater. Sci. Eng. A, 2010, vol. 527, pp. 1126–34.

    Google Scholar 

  21. 21.

    K. Lu, L. Lu, and S. Suresh: Science (80-.)., 2009, vol. 324, pp. 349–52.

  22. 22.

    22 N. Hansen: Scr. Mater., 2004, vol. 51, pp. 801–06.

    CAS  Google Scholar 

  23. 23.

    23 I. Zuiko and R. Kaibyshev: Mater. Sci. Eng. A, 2017, vol. 702, pp. 53–64.

    CAS  Google Scholar 

  24. 24.

    24 O.F. Higuera and J.M. Cabrera: Mech. Mater., 2013, vol. 67, pp. 9–14.

    Google Scholar 

  25. 25.

    25 J.A. Muñoz, O.F. Higuera, and J.M. Cabrera: Mater. Sci. Eng. A, 2017, vol. 697, pp. 24–36.

    Google Scholar 

  26. 26.

    26 R. Tejedor, K. Edalati, J.A. Benito, Z. Horita, and J.M. Cabrera: Mater. Sci. Eng. A, 2019, vol. 743, pp. 597–605.

    CAS  Google Scholar 

  27. 27.

    27 C. Casas, R. Tejedor, R. Rodríguez-baracaldo, J.A. Benito, and J.M. Cabrera: Mater. Sci. Eng. A, 2015, vol. 627, pp. 205–16.

    CAS  Google Scholar 

  28. 28.

    28 S.I. Wright, M.M. Nowell, and D.P. Field: Microsc. Microanal., 2011, vol. 17, pp. 316–29.

    CAS  Google Scholar 

  29. 29.

    29 J. Azadmanjiri, C.C. Berndt, A. Kapoor, and C. Wen: Crit. Rev. Solid State Mater. Sci., 2015, vol. 40, pp. 164–81.

    CAS  Google Scholar 

  30. 30.

    30 J.A. Muñoz, O.F. Higuera, J.A. Benito, D. Bradai, T. Khelfa, R.E. Bolmaro, A.M. Jorge, and J.M. Cabrera: Mater. Sci. Eng. A, 2019, vol. 740–741, pp. 108–20.

    Google Scholar 

  31. 31.

    31 O.F. Higuera-Cobos and J.M. Cabrera: Mater. Sci. Eng. A, 2013, vol. 571, pp. 103–14.

    CAS  Google Scholar 

  32. 32.

    32 P. Rodríguez-Calvillo, N. Ferrer, and J.M. Cabrera: J. Alloys Compd., 2015, vol. 626, pp. 340–48.

    Google Scholar 

  33. 33.

    33 F.-D. Dumitru, O.F. Higuera-Cobos, and J.M. Cabrera: Mater. Sci. Eng. A, 2014, vol. 594, pp. 32–39.

    CAS  Google Scholar 

  34. 34.

    34 P. Ludwik: Elemente Der Technologischen Mechanik, Springer Berlin Heidelberg, 2013.

    Google Scholar 

  35. 35.

    35 J.H. Hollomon: Aime Trans, 1945, vol. 12, pp. 1–22.

    Google Scholar 

  36. 36.

    36 Y. Bergström: Mater. Sci. Eng., 1970, vol. 5, pp. 193–200.

    Google Scholar 

  37. 37.

    37 Y. Estrin, L.S. Tóth, A. Molinari, and Y. Bréchet: Acta Mater., 1998, vol. 46, pp. 5509–22.

    CAS  Google Scholar 

  38. 38.

    38 Y. Estrin and H. Mecking: Acta Metall., 1984, vol. 32, pp. 57–70.

    Google Scholar 

  39. 39.

    39 A. Kolmogorov: Izv. Akad. Nauk SSSR. Ser. Mater, 1937, vol. 1, pp. 355–39.

    Google Scholar 

  40. 40.

    40 J. William and R. Mehl: Trans. Met. Soc. AIME, 1939, vol. 135, pp. 416–42.

    Google Scholar 

  41. 41.

    41 M. Avrami: J. Chem. Phys., 1941, vol. 9, pp. 177–84.

    CAS  Google Scholar 

  42. 42.

    42 D.A. Hughes and N. Hansen: Acta Mater., 2000, vol. 48, pp. 2985–3004.

    CAS  Google Scholar 

  43. 43.

    43 J.A. Muñoz, O.F. Higuera, and J.M. Cabrera: Mater. Sci. Eng. A, 2017, vol. 681, pp. 85–96.

    Google Scholar 

  44. 44.

    44 P.J. Apps, J.R. Bowen, and P.B. Prangnell: Acta Mater., 2003, vol. 51, pp. 2811–22.

    CAS  Google Scholar 

  45. 45.

    45 T. Khelfa, M.A. Rekik, M. Khitouni, and J.M. Cabrera-Marrero: Int. J. Adv. Manuf. Technol., 2017, vol. 92, pp. 1731–40.

    Google Scholar 

  46. 46.

    46 M. Kawasaki, Z. Horita, and T.G. Langdon: Mater. Sci. Eng. A, 2009, vol. 524, pp. 143–50.

    Google Scholar 

  47. 47.

    47 E. Bonnot, A.-L. Helbert, F. Brisset, and T. Baudin: Mater. Sci. Eng. A, 2013, vol. 561, pp. 60–66.

    CAS  Google Scholar 

  48. 48.

    48 F. Cruz-Gandarilla, A.M. Salcedo-Garrido, M. Avalos, R. Bolmaro, T. Baudin, J.G. Cabañas-Moreno, and H.J. Dorantes-Rosales: {IOP} Conf. Ser. Mater. Sci. Eng., 2015, vol. 82, p. 12077.

    Google Scholar 

  49. 49.

    49 H. Jafarian: Mater. Charact., 2016, vol. 114, pp. 88–96.

    CAS  Google Scholar 

  50. 50.

    50 H.R. Jafarian, S.H.M. Anijdan, A.R. Eivani, and N. Park: Mater. Sci. Eng. A, 2017, vol. 703, pp. 196–204.

    CAS  Google Scholar 

  51. 51.

    51 M. Alizadeh, M.H. Paydar, D. Terada, and N. Tsuji: Mater. Sci. Eng. A, 2012, vol. 540, pp. 13–23.

    CAS  Google Scholar 

  52. 52.

    A. Loucif, T. Baudin, F. Brisset, R.B. Figueiredo, R. Chemam, and T.G. Langdon: in Materials Science Forum, vol. 702, 2012, pp. 165–68.

  53. 53.

    53 A. Khorashadizadeh, D. Raabe, M. Winning, and R. Pippan: Adv. Eng. Mater., 2011, vol. 13, pp. 245–50.

    CAS  Google Scholar 

  54. 54.

    A.Y. Khereddine, F. HadjLarbi, H. Azzeddine, T. Baudin, F. Brisset, A.-L. Helbert, M.-H. Mathon, M. Kawasaki, D. Bradai, and T.G. Langdon: J. Alloys Compd., 2013, vol. 574, pp. 361–67.

    CAS  Google Scholar 

  55. 55.

    55 K.J. Al-Fadhalah, S.N. Alhajeri, A.I. Almazrouee, and T.G. Langdon: J. Mater. Sci., 2013, vol. 48, pp. 4563–72.

    CAS  Google Scholar 

  56. 56.

    56 C.L.P. Silva, I.C. Tristao, S. Sabbaghianrad, S.A. Torbati-Sarraf, R.B. Figueiredo, and T.G. Langdon: Mater. Res., 2017, vol. 20, pp. 2–7.

    Google Scholar 

Download references

Acknowledgments

JAM gratefully acknowledge the financial support of the Ministry of Science and Higher Education of the Russian Federation in the framework of Increase Competitiveness Program of NUST «MISiS» (No. К4-2019-045), implemented by a governmental decree dated 16th of March 2013, N 211. AZ acknowledges the financial support from the Ministry of Science and Higher Education of the Russian Federation through Grant 074-02-2018-329. JMC thanks CONACyT (Mexico) for partial funding his sabbatical leave in UMSNH.

Conflict of interest

None

Data Availability

The raw/processed data required to reproduce these findings can be provided upon request.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jairo Alberto Muñoz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 7, 2020.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Muñoz, J.A., Bolmaro, R.E., Jorge, A.M. et al. Prediction of Generation of High- and Low-Angle Grain Boundaries (HAGB and LAGB) During Severe Plastic Deformation. Metall Mater Trans A 51, 4674–4684 (2020). https://doi.org/10.1007/s11661-020-05873-3

Download citation