Skip to main content
Log in

Effect of Cooling Rate on Carbide Banding in High-Chromium Bearing Steel After Spheroidization

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This study investigated the effect of cooling rate on the formation of carbide bands in hot-rolled SUJ2 steel after spheroidization. The metallographic microstructure was observed under an optical microscope and a scanning electron microscope with an electron backscatter diffractometer, and the distribution of the chemical composition was analyzed using a field emission electron probe. Experimental results show the formation of carbide banding and the effect of cooling rate. Cr segregation occurs in carbide banding, in which C content increases after austenitization and spheroidization. The area fraction of carbide in the band region is larger than that in the normal region. Increasing the cooling rate can restrain the diffusion of C into the Cr microsegregation band. The formation of carbide banding can be avoided at a high cooling rate. This phenomenon may aid in quantifying the processing parameter of the cooling rate to improve the quality and the lifetime of bearings for bearing steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. [2] J.D. Verhoeven: J. Mater. Eng. Perform. 2000; vol. 9, pp. 286-96.

    Article  CAS  Google Scholar 

  2. [5] H.K.D.H. Bhadeshia: Prog. Mater. Sci., 2012, vol. 57, pp. 268-435.

    Article  CAS  Google Scholar 

  3. [6] A. Pokorny, J. Pokorny: De Ferri Metallographia, Solidification and Deformation of Steels; Berger-Lerrault, Paris, 1967; Vol. 3, pp 95-103.

    Google Scholar 

  4. [7] J.E. Stead: J. Soc. Chem. Ind. 1913, vol. 33, pp. 173-84.

    Article  Google Scholar 

  5. [8] J.E. Stead: J. Iron Steel Inst., 1915, vol. 91, pp. 140-81.

    Google Scholar 

  6. [9] J.S. Kirkaldy, J. von Destinon-Forstmann, R.J. Brigham: Can. Metall. Q., 1962, vol. 1, pp. 59-81.

    Article  CAS  Google Scholar 

  7. [10] C.F. Jatczak, D.J. Girardi, E.S. Rowland: Trans. ASM, 1956, vol. 48, pp. 279-305.

    Google Scholar 

  8. [11] P.G. Bastien: J. Iron Steel Inst., 1957, vol. 187, pp. 281-91.

    CAS  Google Scholar 

  9. Walker PFF, Kerrigan A, Green M, Cardinal N, Connell J, Rivera-Díaz-del-Castillo PEJ (2015) In: Beswick J (ed) Bearing Steel Technologies in Advances in Steel Technologies for Rolling Bearings. ASTM International, West Conshohocken, pp 54-80.

    Google Scholar 

  10. [13] C. Hays and R.P. Stemmler: J. Mater. Eng. Perform., 2000, vol. 9, pp. 147-52.

    Article  CAS  Google Scholar 

  11. [14] F.G. Caballero, A. García-Junceda, C. Capdevila and C. García de Andrés: Mater. Trans., 2006, vol. 47, pp. 2269-76.

    Article  CAS  Google Scholar 

  12. [15] S. Deldar, H. Mirzadeh, M.H. Parsa: Eng. Fail. Anal., 2016, vol. 68, pp. 132–37.

    Article  CAS  Google Scholar 

  13. [16] M. Maalekian, H. Azizi-Alizamini, M. Militzer: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 608-22.

    Article  Google Scholar 

  14. [17] K. Wang, T. Yu, Y. Song, H.X. Li, M.D. Liu, R. Luo, J.Y. Zhang, F.S. Fang and X.D. Lin: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 1213-24.

    Article  Google Scholar 

  15. [18] T.A. Kop, J. Sietsma, and S. van der Zwaag: Mater. Sci. Technol., 2001, vol. 17, pp. 1569-74.

    Article  CAS  Google Scholar 

  16. [19] B.L. Ennis, E. Jimenez-Melero, R. Mostert, B. Santillana, P.D. Lee: Acta Mater., 2016, vol. 115, pp.132-42.

    Article  CAS  Google Scholar 

  17. [20] S.E. Offerman, N.H. van Dijk, M.Th. Rekveldt, J. Sietsma, S. van der Zwaag: Mater. Sci. Technol., 2002, vol. 18, pp. 297-303.

    Article  CAS  Google Scholar 

  18. [21] C.A. Stickels: Metall. Trans., 1974, vol. 5, pp. 865-74.

    Article  CAS  Google Scholar 

  19. [22] D. Chae, D. Koss, A. Wilson, P. Howell: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 995-1005.

    Article  CAS  Google Scholar 

  20. [23] G. Krauss: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 781-92.

    Article  CAS  Google Scholar 

  21. [24] A. Stauffer, D. Koss, J. McKirgan: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1317-24.

    Article  CAS  Google Scholar 

  22. [25] Y.K. Sun, D. Wu: J. Iron Steel Res. Int. 2009, vol. 16, pp. 61-80.

    Article  CAS  Google Scholar 

  23. [26] X.Q. Wu, Y. Katada: Corrosion, 2004, vol. 60, pp. 1045-57.

    Article  CAS  Google Scholar 

  24. [1] L. Hellner, T.O. Norrman: Jernkontorets Ann., 1968, vol. 152, pp. 269-86.

    CAS  Google Scholar 

  25. [27] S.J. Lee, D.K. Matlock, C.J. Van Tyne: Scripta Mater., 2011, vol. 64, pp. 805-08.

    Article  CAS  Google Scholar 

  26. [28] T. Malinovskaya, A. Kurasov, G.V. Glaskova, Y.I. Spektor: Met. Sci. Heat Treat., 1975, vol. 17, pp. 609-10.

    Article  Google Scholar 

  27. [29] K. Barui, B. Bhattacharyya: J. Mater. Sci. Lett., 1985, vol. 4, pp. 685-87.

    Article  Google Scholar 

  28. [30] M. Flemings: Mod. Cast., 1964, vol. 46, pp. 353-62.

    Google Scholar 

  29. [31] I. Minkoff, Solidification and Cast Structure, Wiley, New York, 1986, pp 7–12.

    Google Scholar 

  30. [32] S.J. Lee, D.K. Matlock and C.J. Van Tyne: ISIJ Int., 2011, vol. 51, pp. 1903-11.

    Article  CAS  Google Scholar 

  31. [33] A. Salimi, H. M. Zadeh, M. R. Toroghinejad, D. Asefi, and A. Ansaripour: Mater. Technol., 2013, vol. 47, pp. 385-89.

    CAS  Google Scholar 

  32. [34] Y. Numata, H. Shibata, H. Nishiyama, T. Nakata, T. Kasugai, H. Katou: J-STAGE, 2007, vol. 79, pp. 367-73.

    CAS  Google Scholar 

  33. [35] H.C.H. Carpenter, J.M. Robertson: J. Iron Steel Inst., 1933, vol. 127, pp. 259-84.

    Google Scholar 

  34. [36] H.C.H. Carpenter, J.M. Robertson: J. Iron Steel Inst., 1931, vol. 123, pp. 345-79.

    Google Scholar 

  35. [37] W. Peter and H. Finkler: Härt.-tech. Mitt., 1961, vol. 16, pp. 51-60.

    Google Scholar 

Download references

Acknowledgments

The authors would gratefully like to thank the Ministry of Science and Technology for supporting the Fund in the Project under MOST 107-2221-E-006-018 and the Instrument Center of NCKU to provide Hitachi SU5000 FE-SEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jui-Chao Kuo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted February 3, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, HY., Su, YH.F., Lin, GR. et al. Effect of Cooling Rate on Carbide Banding in High-Chromium Bearing Steel After Spheroidization. Metall Mater Trans A 51, 4471–4482 (2020). https://doi.org/10.1007/s11661-020-05870-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05870-6

Navigation