Skip to main content
Log in

Evolution of Deformation Texture in Low Modulus β Ti-34Nb-2Ta-(0, 3)Zr-0.5O Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Ti-Nb-based low modulus metastable β-titanium alloys are popular choice for orthopedic implant materials. The performance of these materials could be affected by variation in crystallographic texture developed during processing. In the present study, texture evolution during unidirectional rolling and multi-step cross-rolling of the alloys Ti-34Nb-2Ta-3Zr-0.5O (TNTZO) and Ti-34Nb-2Ta-0.5O (TNTO) (in wt pct) has been studied. In both the alloys, the rolling texture is characterized by the absence of RD∥〈110〉 fiber, and cross-rolling leads to a stronger texture than unidirectional rolling. However, the prominent texture components in the cross-rolled condition are different for the two alloys. The TNTZO alloy shows the formation of a strong γ-fiber (ND∥〈111〉) along with {001}〈110〉 components while in TNTO, the texture is dominated by strong {001}〈110〉 component. These experimental results have been analyzed by simulations using viscoplastic self-consistent model and further validated by microstructural analysis using electron back scattered diffraction (EBSD). The deformation texture evolution has been attributed to a predominantly \( \left\{ {11\overline{2} } \right\}\left\langle {111} \right\rangle \) slip. The simulated texture of Ti-34Nb-2Ta-0.5O alloy shows a minor deviation from the experimental texture, which can be related to the reduced stability of this alloy due to the absence of Zr.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. M. Niinomi: J. Mech. Behav. Biomed., 2008, vol. 1, pp. 30-42.

    Google Scholar 

  2. E. Eisenbarth, D. Velten, M. Müller, R. Thull and J. Breme: Biomaterials, 2004, vol. 25, pp. 5705-5713.

    CAS  Google Scholar 

  3. J. Stráský, P. Harcuba, K. Václavová, K. Horváth, M. Landa, O. Srba and M. Janeček, J. Mech. Behav. Biomed, 2017, vol. 71, pp. 329-336.

    Google Scholar 

  4. H. Liu, M. Niinomi, M. Nakai, S. Obara and H. Fujii: Mater. Sci. Eng. A, 2017, vol. 704, pp. 10-17.

    CAS  Google Scholar 

  5. S. Acharya, S. Bahl, S.S. Dabas, S. Hassan, V. Gopal, A.G. Panicker, G. Manivasagam, S. Suwas and K. Chatterjee: Mater. Sci. Eng. C, 2019, vol. 103, pp. 109755.

    CAS  Google Scholar 

  6. T. Inamura, Y. Kinoshita, J. Kim, H. Kim, H. Hosoda, K. Wakashima, S. Miyazaki: Mater. Sci. Eng. A, 2006, vol. 438, pp. 865-869.

    Google Scholar 

  7. H. Kim, T. Sasaki, K. Okutsu, J. Kim, T. Inamura, H. Hosoda, S. Miyazaki: Acta Mater. 2006, vol. 54, pp. 423-433.

    CAS  Google Scholar 

  8. A. Panigrahi, B. Sulkowski, T. Waitz, K. Ozaltin, W. Chrominski, A. Pukenas, J. Horky, M. Lewandowska, W. Skrotzki, M. Zehetbauer: J. Mech. Behav. Biomed., 2016, vol. 62, pp. 93-105.

    CAS  Google Scholar 

  9. [9] D. Raabe, K. Lüucke: Mater. Sci Tech., 1993, vol. 9, pp. 302-312.

    CAS  Google Scholar 

  10. S. Acharya, A.G. Panicker, D.V. Laxmi, S. Suwas, K. Chatterjee: Mater Des, 2019, vol. 164, pp. 107555.

    CAS  Google Scholar 

  11. Y. Yang, G. Li, G. Cheng, H. Wang, M. Zhang, F. Xu, K. Yang: Scr. Mater., 2008, vol. 58 pp. 9-12.

    CAS  Google Scholar 

  12. B. Sander, D. Raabe: Mater. Sci. Eng. A, 2008, vol. 479, pp. 236-247.

    Google Scholar 

  13. S. Hanada, T. Yoshio, O. Izumi: T Jpn I Met., 1986, vol. 27, pp. 496-503.

    CAS  Google Scholar 

  14. T. Leffers, R. Ray, Progr. Mater. Sci., 2009, vol. 54, pp. 351-396.

    CAS  Google Scholar 

  15. S. Mercier, L. Tóth, A. Molinari, Texture, Stress, and Microstructure, 1995, vol. 25, pp. 45-61.

    CAS  Google Scholar 

  16. H. Kim, Y. Ikehara, J. Kim, H. Hosoda, S. Miyazaki, Acta Mater., 2006, vol. 54, pp. 2419-2429.

    CAS  Google Scholar 

  17. V. Cojocaru, D. Raducanu, T. Gloriant, D. Gordin, I. Cinca: Mater. Sci. Eng. A, 2013, vol. 586, pp. 1-10.

    CAS  Google Scholar 

  18. M. Abdel-Hady, K. Hinoshita, H. Fuwa, Y. Murata, M. Morinaga, Mater. Sci. Eng. A, 2008, vol. 480, pp. 167-174.

    Google Scholar 

  19. N.P. Gurao, S. Suwas, Mater. Sci. Eng. A, 2009, vol. 504, pp. 24-35.

    Google Scholar 

  20. S. Wronski, M. Wrobel, A. Baczmanski, K. Wierzbanowski: Mater. Charact., 2013, vol. 77 pp. 116-126.

    CAS  Google Scholar 

  21. S. Suwas, N. Gurao, Comprehensive Materials Processing, 2014, vol. 3, pp. 81-106.

    Google Scholar 

  22. R. Lebensohn, C. Tomé, Los Alamos National Laboratory, 2007.

  23. Q. Chen, A. Ngan, B. Duggan, Proc. Royal Soc. A, 2003, vol. 459, pp. 1661-1685.

    CAS  Google Scholar 

  24. C. Tome, G. Canova, U. Kocks, N. Christodoulou, J. Jonas, Acta metal., 1984, vol. 32, pp. 1637-1653.

    CAS  Google Scholar 

  25. Y. Yang, S. Wu, G. Li, Y. Li, Y. Lu, K. Yang, P. Ge, Acta Mater., 2010, vol. 58, pp. 2778-2787.

    CAS  Google Scholar 

  26. R. Talling, R. Dashwood, M. Jackson, D. Dye, Acta Mater. 2009, vol. 57, pp. 1188-1198.

    CAS  Google Scholar 

  27. T. Yano, Y. Murakami, D. Shindo, S. Kuramoto, Acta Mater., 2009, vol. 57, pp. 628-633.

    CAS  Google Scholar 

  28. [28] M. Besse, P. Castany, T. Gloriant, Acta Mater, 2011, vol. 59, pp. 5982-5988.

    CAS  Google Scholar 

  29. A.O. Hayama, J.F. Lopes, M.J.G. Da Silva, H.F. Abreu, R. Caram, Mater Des, 2014, vol. 60 pp. 653-660.

    CAS  Google Scholar 

  30. S. Acharya, A.G. Panicker, V. Gopal, S.S. Dabas, G. Manivasagam, S. Suwas and K. Chatterjee: Mater. Sci. Eng. C, 2020, vol. 110, pp. 110729.

    CAS  Google Scholar 

  31. M. Huh, O. Engler, D. Raabe, Texture, Stress, and Microstructure, 1995, vol. 24, pp. 225-237.

    Google Scholar 

  32. Q. Chen, M. Quadir, B. Duggan, Philos. mag., 2006, vol. 86, pp. 3633-3646.

    CAS  Google Scholar 

  33. A. Malin, M. Hatherly, Met. Sci., 1979, vol. 13, pp. 463-472.

    CAS  Google Scholar 

  34. P. Jackson, Scr. metall., 1983, vol. 17, pp. 199-202.

    CAS  Google Scholar 

  35. B. Bay, N. Hansen, D. Hughes, D. Kuhlmann-Wilsdorf, Acta metal. mater., 1992, vol. 40, pp. 205-219.

    CAS  Google Scholar 

  36. I. Dillamore, J. Roberts, A. Bush, Met. Sci., 1979, vol. 13, pp. 73-77.

    CAS  Google Scholar 

  37. [37] S. Mahesh, Acta Mater. 2006, vol. 54, pp. 4565-4574.

    CAS  Google Scholar 

  38. S. Acharya, S. Bahl, K. Chatterjee, S. Suwas, Materialia, 2018, vol. 4, pp. 20-32.

    Google Scholar 

  39. J. Luster, M. Morris, Metall. Mater. Trans. A, 1995, vol. 26, pp. 1745-1756.

    Google Scholar 

  40. T. Bieler, P. Eisenlohr, F. Roters, D. Kumar, D. Mason, M. Crimp, D. Raabe, Int. J Plasticity, 2009, vol. 25, pp. 1655-1683.

    CAS  Google Scholar 

  41. M. Takenaka, N. Fujita, Y. Hayakawa, N. Tsuji, Acta Mater., 2018, vol. 157, pp. 196-208.

    CAS  Google Scholar 

  42. S. Hanada, M. Ozeki, O. Izumi, Metall. Trans A, 1985, vol. 16, pp. 789-795.

    Google Scholar 

  43. H. Tobe, H.Y. Kim, T. Inamura, H. Hosoda, S. Miyazaki, Acta Mater., 2014, 64: 345-355.

    CAS  Google Scholar 

  44. S. Suwas, R. Ray, Metall. Mater. Trans. A, 2000, vol. 31 pp. 2339-2350.

    Google Scholar 

  45. D. Raabe, K. Lücke, Z Metalkd, 1994, vol. 85, pp. 302-306.

    CAS  Google Scholar 

  46. P. Welch, G. Davies, Texture, Stress, and Microstructure, 1983, vol. 6, pp. 21-37.

    CAS  Google Scholar 

  47. R. Ray, J.J. Jonas, R. Hook, Int. mater. rev., 1994, vol. 39, pp. 129-172.

    CAS  Google Scholar 

  48. L. Toth, A. Molinari, D. Raabe, Metall. Mater. Trans. A, 1997, vol. 28, 2343-2351.

    Google Scholar 

  49. E. Pang, E. Pickering, S.-I. Baik, D.N. Seidman, N.G. Jones, Acta Mater, 2018, vol. 153, pp. 62-70.

    CAS  Google Scholar 

  50. Y. Hao, S. Li, S. Sun, R. Yang, Mater. Sci. Eng. A, 2006, vol. 441, pp. 112-118.

    Google Scholar 

  51. H. Xing, J. Sun, Appl. Phys. Lett., 2008, vol. 93, pp. 031908.

    Google Scholar 

  52. M.J. Lai, T. Li, D. Raabe, Acta Mater., 2018, vol. 151, 67-77.

    CAS  Google Scholar 

  53. Y. Yang, G. P. Li, G. M. Cheng, Y. L. Li, K. Yang, Appl. Phys. Lett., 2009, vol. 94, 061901.

    Google Scholar 

  54. A. Böcker, H. Klein, H. Bunge, Texture, Stress, and Microstructure, 1990, vol. 12, pp. 103-123.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Department of Science and Technology (DST-SERB), India, for funding this work. The authors would also like to thank Dr. Amit Bhattacharya, Scientist, Defence Metallurgical Research Laboratory, Hyderabad, India, for his crucial support towards this work through many useful discussions. Authors gratefully acknowledge Dr. C.N. Tome and Dr. R.A. Lebensohn for providing VPSC7 code. SA acknowledges the contribution of Hritwik Kumar, summer intern at IISc Bangalore and undergraduate student at IIEST Shibpur, India, in preparation of samples for characterization. The extensive use of microscopes at the Advanced Facility of Microscopy and Microanalysis (AFMM) facility and XRD at the Institute X-ray facility, Indian Institute of Science, Bangalore, is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyam Suwas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 15, 2019.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1269 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acharya, S., Mishra, S., Yazar, K.U. et al. Evolution of Deformation Texture in Low Modulus β Ti-34Nb-2Ta-(0, 3)Zr-0.5O Alloys. Metall Mater Trans A 51, 4045–4058 (2020). https://doi.org/10.1007/s11661-020-05850-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05850-w

Navigation