Skip to main content
Log in

Microstructure, Hardness, and Wear Assessment of Spark-Plasma-Sintered Ti-xAl-1Mo Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Alloys from the Ti-Al-Mo ternary system are of high importance in aerospace applications due to their excellent specific strength-to-density ratio, excellent corrosion, and creep resistance up to 600 °C. However, their sliding wear behavior has not been adequately explored. Cp-Ti and Ti-xAl-1Mo (x = 3, 5, 7) based near-alpha titanium alloys were successfully compacted by spark plasma sintering. The effect of Al addition on the densification, microhardness, and wear behavior of the developed alloys was studied. Results from the experiment showed that all compacts were almost fully densified. An increase in the value of the microhardness was recorded from 208 ± 10 to 352 ± 17 HV as the Al content increased. Al additions played an important role in the wear performance of the sintered alloy as detected from the coefficient of friction obtained with the sliding time and varying normal load. The alloyed Ti compacts had improved wear resistance. The wear rate values of alloyed compacts were 14 to 48.54 pct lower compared to the sintered Cp-Ti compacts tested as the Al content increased. The best wear resistance was observed for Ti-7Al-1Mo. Scanning electron microscopy micrographs, energy-dispersive spectroscopy, and wear debris show that the major wear mechanism detected was adhesive wear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. V.N. Chuvildeev, V.I. Kopylov, A.V. Nokhrin, P.V. Tryaev, N.A. Kozlova, N.Y. Tabachkova, Y.G. Lopatin, A.V. Ershova, A.S. Mikhaylov, M.Y. Gryaznov, and M.K. Chegurov: J. Alloys Compd., 2017, vol. 723, pp. 354–67.

    Google Scholar 

  2. O.E. Falodun, B.A. Obadele, S.R. Oke, M.E. Maja, and P.A. Olubambi: J. Alloys Compd., 2018, vol. 736, pp. 202–10.

    CAS  Google Scholar 

  3. Y.M. Ahmed, K.S.M. Sahari, M. Ishak, and B.A. Khidhir: Int. J. Sci. Res., 2014, vol. 3, pp. 1351–61.

    Google Scholar 

  4. M. Niinomi: in Encyclopedia of Biomedical Engineering, R. Narayan, ed., Elsevier, Oxford, United Kingdom, 2019, pp. 213–24.

  5. F.A. Hajbagheri, S.K. Bozorg, and A. Amadeh: J. Mater. Sci., 2008, vol. 43 (17), pp. 5720–27.

    CAS  Google Scholar 

  6. O.E. Falodun, B.A. Obadele, S.R. Oke, O.O. Ige, P.A. Olubambi, M.L. Lethabane, and S.W. Bhero: Trans. Nonferrous Met. Soc. China, 2018, vol. 28 (1), pp. 47–54.

    CAS  Google Scholar 

  7. L. Ceschini, E. Lanzoni, C. Martini, D. Prandstraller, and G. Sambogna: Wear, 2008, vol. 264 (1), pp. 86–95.

    CAS  Google Scholar 

  8. J. Ureña, E. Tabares, S. Tsipas, A. Jiménez-Morales, and E. Gordo: J. Mech. Behav. Biomed. Mater., 2019, vol. 91, pp. 335–44.

    Google Scholar 

  9. G. Cassar, J.C.A.B. Wilson, S. Banfield, J. Housden, A. Matthews, and A. Leyland: Wear, 2010, vol. 269 (1), pp. 60–70.

    CAS  Google Scholar 

  10. A.W. El-Morsy: Eng. Technol. Appl. Sci. Res., 2018, vol. 8(1), pp. 2379–84.

    Google Scholar 

  11. Y. Qin, L. Geng, and D. Ni: J. Mater. Sci., 2011, vol. 46 (14), pp. 4980–85.

    CAS  Google Scholar 

  12. X.X. Li, Y. Zhou, Y.X. Li, X.L. Ji, and S.Q. Wang: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 4360–68.

    Google Scholar 

  13. S. Yerramareddy and S. Bahadur: Wear, 1991, vol. 142 (2), pp. 253–63.

    CAS  Google Scholar 

  14. W. Zhou, R. Sahara, and K. Tsuchiya: J. Alloys Compd., 2017, vol. 727, pp. 579–95.

    CAS  Google Scholar 

  15. M. Textor, C. Sittig, V. Frauchiger, S. Tosatti, and D.M. Brunette: Titanium in Medicine, 2001, Springer, Berlin, pp. 171–230.

    Google Scholar 

  16. C. Leyens and M. Peters: Titanium and Titanium Alloys: Fundamentals and Applications, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2003.

    Google Scholar 

  17. K. Hashimoto, M. Kimura, and R. Suyama: Nippon Steel Technical Report, Nippon Steel, Tokyo, 1994.

    Google Scholar 

  18. M.B. Shongwe, M.M. Ramakokovhu, S. Diouf, M.O. Durowoju, B.A. Obadele, R. Sule, M.L. Lethabane, and P.A. Olubambi: J. Alloys Compd., 2016, vol. 678, pp. 241–48.

    CAS  Google Scholar 

  19. B.J. Babalola, M.B. Shongwe, B.A. Obadele, P.A. Olubambi, O.O. Ayodele, A.L. Rominiyi, and S.O. Jeje: EDP Sciences MATEC Web of Conferences, EDP Sciences, Les Ulis, France, 2018, vol. 249.

  20. J. Guyon, A. Hazotte, J.P. Monchoux, and E. Bouzy: Intermetallics, 2013, vol. 34, pp. 94–100.

    CAS  Google Scholar 

  21. N. Weston, F. Derguti, A. Tudball, and M. Jackson: J. Mater. Sci., 2015, vol. 50 (14), pp. 4860–78.

    CAS  Google Scholar 

  22. G. Suárez, Y. Sakka, T.S. Suzuki, T. Uchikoshi, X. Zhu, E.F. Aglietti: Sci. Technol. Adv. Mater., 2009, vol. 10, p. 25.

    Google Scholar 

  23. B.A. Obadele, A. Andrews, P.A. Olubambi, M. Mathew, and S. Pityana: Wear, 2015, vol. 328, pp. 295–300.

    Google Scholar 

  24. A. Molinari, G. Straffelini, B. Tesi, and T. Bacci: Wear, 1997, vol. 208 (1–2), pp. 105–12.

    CAS  Google Scholar 

  25. S.R. Chauhan and K. Dass: Adv. Tribol., 2013, vol. 9, p. 324952.

    Google Scholar 

  26. M. Chowdhury, M. Khalil, D. Nuruzzaman, and M. Rahaman: Int. J. Mech. Mechatron. Eng., 2011, vol. 11 (1), pp. 45–49.

    Google Scholar 

  27. F. Zhang, M. Yang, A.T. Clare, X. Lin, H. Tan, and Y. Chen: J. Alloys Compd., 2017, vol. 727, pp. 821–31.

    CAS  Google Scholar 

  28. ASTM International, Standard Test Method for Linearly Reciprocating Ball-on-Flat Sliding Wear ASTM G133-05(2016), ASTM International, West Conshohocken, PA, 2016.

    Google Scholar 

  29. J. Qu and J.J. Truhan: Wear, 2006, vol. 261 (7), pp. 848–55.

    CAS  Google Scholar 

  30. S. Sharma, S. Sangal, and K. Mondal: Wear, 2013, vol. 300 (1), pp. 82–89.

    CAS  Google Scholar 

  31. A. Miklaszewski, D. Garbiec, and K. Niespodziana: Adv. Powder Technol., 2018, vol. 29 (1), pp. 50–57.

    CAS  Google Scholar 

  32. J.H. Shon, J.M. Park, K.S. Cho, J.K. Hong, N.K. Park, and M.H. Oh: Trans. Nonferrous Met. Soc. China, 2014, vol. 24, pp. s59–s67.

    CAS  Google Scholar 

  33. H. Conrad: Mater. Sci. Eng. A, 2000, vol. 287(2), pp. 227–37.

    Google Scholar 

  34. M.T. Jia, B. Gabbitas, and L. Bolzoni: J. Mater. Process. Technol., 2018, vol. 255, pp. 611–20.

    CAS  Google Scholar 

  35. I. Kornilov, E. Pylaeva, and M. Volkova: Russ. Chem. Bull., 1956, vol. 5 (7), pp. 787–95.

    Google Scholar 

  36. F.C. Campbell: Elements of Metallurgy and Engineering Alloys, Metallic Structure, ASM International, Materials Park, OH, 2008, p. 11.

    Google Scholar 

  37. R. Banerjee, D. Bhattacharyya, P.C. Collins, G.B. Viswanathan, and H.L. Fraser: Acta Mater., 2004, vol. 52 (2), pp. 377–85.

    CAS  Google Scholar 

  38. S.O. Jeje, M.B. Shongwe, N. Makedi, A.L. Rominiyi, B.J. Babalola, and P.F. Lepele: IOP Conf. Ser. Mater. Sci. Eng., 2019, vol. 655, p. 012018.

    CAS  Google Scholar 

  39. P. Kwasniak, H. Garbacz, and K. Kurzydlowski: Acta Mater., 2016, vol. 102, pp. 304–14.

    CAS  Google Scholar 

  40. Z. Wang, Y. Zhou, H. Wang, Y. Li, and W. Huang: Mater. Lett., 2018, vol. 218, pp. 190–92.

    CAS  Google Scholar 

  41. X. Feng, J.H. Sui, W. Cai, and A.L. Liu: Scripta Mater., 2011, vol. 64 (9), pp. 824–27.

    CAS  Google Scholar 

  42. G.D. Revankar, R. Shetty, S.S. Rao, and V.N. Gaitonde: J. Mater. Res. Technol., 2017, vol. 6 (1), pp. 13–32.

    CAS  Google Scholar 

  43. Q. Zhang, H. Ding, G. Zhou, X. Guo, M. Zhang, N. Li, H. Wu, and M. Xia: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 220–33.

    Google Scholar 

  44. I. Hutchings and P. Shipway: Tribology: Friction and Wear of Engineering Materials, Butterworth-Heinemann, Oxford, United Kingdom, 2017.

    Google Scholar 

  45. B. Liu, Y. Liu, X.Y. He, H.P. Tang, L.F. Chen, and B.Y. Huang: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 2825–31.

    CAS  Google Scholar 

  46. H. Conrad and K.K. Wang: in Strength of Metals and Alloys, P. Haasen, V. Gerold, and G. Kostorz, eds., Pergamon Press, Oxford, United Kingdom, 1979, pp. 1067–72.

  47. A. Abdelbary: in Wear of Polymers and Composites, A. Abdelbary, ed., Woodhead Publishing, Oxford, United Kingdom, 2014, pp. 37–66.

  48. A. Riyadh, K. Rafezi, and A.D. Yarub: J. Surf. Eng. Mater. Adv. Technol., 2012, 2, 167-173.

    Google Scholar 

  49. H. Zhong, L.Y. Dai, Y.J. Yang, Y. Yue, B.A. Wang, X.Y. Zhang, M.Z. Ma, and R.P. Liu: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 5678–87.

    Google Scholar 

  50. M.D. Sharma and R. Sehgal: Tribol. Online, 2012, vol. 7 (2), pp. 87–95.

    Google Scholar 

  51. T.S.N. Sankara Narayanan: in Corrosion Protection and Control Using Nanomaterials, V.S. Saji and R. Cook, eds., Woodhead Publishing, Oxford, United Kingdom, 2012, pp. 167–212.

  52. J. Majumdar and I. Manna: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 3786–96.

    Google Scholar 

  53. W. Hong, W. Cai, and S. Wang: Chin. J. Aeronaut., 2018, vol. 31 (5), pp. 867–82.

    Google Scholar 

  54. A.L. Rominiyi, M.B. Shongwe, E.N. Ogunmuyiwa, B.J. Babalola, P.F. Lepele, and P.A. Olubambi: Mater. Chem. Phys., 2020, vol. 240, p. 122130.

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by National Research Foundation of South Africa Unique Grant No. 117867

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samson Olaitan Jeje.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted January 14, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeje, S.O., Shongwe, M.B., Ogunmuyiwa, E.N. et al. Microstructure, Hardness, and Wear Assessment of Spark-Plasma-Sintered Ti-xAl-1Mo Alloy. Metall Mater Trans A 51, 4033–4044 (2020). https://doi.org/10.1007/s11661-020-05842-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05842-w

Navigation