Skip to main content
Log in

Application of Synchrotron Radiation–Computed Tomography In-Situ Observations and Digital Volume Correlation to Study Low-Cycle Fatigue Damage Micromechanisms in Lost Foam Casting A319 Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The synchrotron radiation–computed tomography (SR-CT) and digital volume correlation (DVC) methods were used to investigate the damage micromechanisms of lost foam casting (LFC) A319 alloy in low-cycle fatigue (LCF). LCF tests with SR-CT in-situ observations allow visualizing the damage evolution process in the bulk. DVC measures the mechanical fields and, thus, allows establishing the relations between crack initiation and propagation, mechanical fields, and microstructure. Cracks initiate at and propagate along hard inclusions due to strain localizations. The damage process, i.e., crack initiation and propagation, can be considered as a series of failure events of hard inclusions under strain localizations. The pores’ size, shape, location, and number were observed to have an influence on crack initiation, while the interconnected hard inclusion networks guarantee the continuous failure events of hard inclusions and, thus, provide crack propagation paths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. 1.S. Tabibian, E. Charkaluk, A. Constantinescu, F. Szmytka, and A. Oudin: Int. J. Fatigue, 2013, vol. 53, pp. 75–81.

    CAS  Google Scholar 

  2. 2.M.B. Grieb, H.-J. Christ, and B. Plege: Procedia Eng., 2010, vol. 2, pp. 1767–76.

    Google Scholar 

  3. N.T. Niane and J.-P. Michalet: Flow Science, New York, NY, 2011.

  4. 4.P.-M. Geffroy, M. Lakehal, J. Goñi, E. Beaugnon, J.-M. Heintz, and J.-F. Silvain: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 441–47.

    CAS  Google Scholar 

  5. S. Tabibian: Ecole Centrale de Lille, Lille, France, 2011.

  6. 6.Q.G. Wang, D. Apelian, and D.A. Lados: J. Light Met., 2001, vol. 1, pp. 73–84.

    CAS  Google Scholar 

  7. 7.H. Zhang, H. Toda, H. Hara, M. Kobayashi, T. Kobayashi, D. Sugiyama, N. Kuroda, and K. Uesugi: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1774–85.

    CAS  Google Scholar 

  8. 8.Y.X. Gao, J.Z. Yi, P.D. Lee, and T.C. Lindley: Acta Mater., 2004, vol. 52, pp. 5435–49.

    CAS  Google Scholar 

  9. 9.H.R. Ammar, A.M. Samuel, and F.H. Samuel: Int. J. Fatigue, 2008, vol. 30, pp. 1024–35.

    CAS  Google Scholar 

  10. 10.J.Z. Yi, Y.X. Gao, P.D. Lee, H.M. Flower, and T.C. Lindley: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 1879–90.

    CAS  Google Scholar 

  11. 11.J.-Y. Buffière, S. Savelli, P.H. Jouneau, E. Maire, and R. Fougères: Mater. Sci. Eng. A, 2001, vol. 316, pp. 115–26.

    Google Scholar 

  12. 12.K. Gall, M.F. Horstemeyer, B.W. Degner, D.L. McDowell, and J. Fan: Int. J. Fract., 2001, vol. 108, pp. 207–33.

    CAS  Google Scholar 

  13. 13.Q.G. Wang, D. Apelian, and D.A. Lados: J. Light Met., 2001, vol. 1, pp. 85–97.

    Google Scholar 

  14. 14.V. Firouzdor, M. Rajabi, E. Nejati, and F. Khomamizadeh: Mater. Sci. Eng. A, 2007, vols. 454–455, pp. 528–35.

    Google Scholar 

  15. A.J. Moffat: Ph.D. Thesis, University of Southampton, Southampton, United Kingdom, 2007.

  16. 16.J.Z. Yi, Y.X. Gao, P.D. Lee, and T.C. Lindley: Mater. Sci. Eng. A, 2004, vol. 386, pp. 396–407.

    Google Scholar 

  17. 17.Z. Ma, A.M. Samuel, H.W. Doty, S. Valtierra, and F.H. Samuel: Mater. Des., 2014, vol. 57, pp. 366–73.

    CAS  Google Scholar 

  18. 18.K.S. Chan, P. Jones, and Q. Wang: Mater. Sci. Eng. A, 2003, vol. 341, pp. 18–34.

    Google Scholar 

  19. 19.D.L. McDowell, K. Gall, M.F. Horstemeyer, and J. Fan: Eng. Fract. Mech., 2003, vol. 70, pp. 49–80.

    Google Scholar 

  20. 20.J. Stolarz, O. Madelaine-Dupuich, and T. Magnin: Mater. Sci. Eng. A, 2001, vol. 299, pp. 275–86.

    Google Scholar 

  21. 21.P. Huter, P. Renhart, S. Oberfrank, M. Schwab, F. Grün, and B. Stauder: Int. J. Fatigue, 2016, vol. 82, pp. 588–601.

    CAS  Google Scholar 

  22. 22.L. Ceschini, I. Boromei, A. Morri, S. Seifeddine, and I.L. Svensson: J. Mater. Process. Technol., 2009, vol. 209, pp. 5669–79.

    CAS  Google Scholar 

  23. D. OvonoOvono, I. Guillot, and D. Massinon: J. Alloys Compd., 2008, vol. 452, pp. 425–31.

    CAS  Google Scholar 

  24. 24.T. Beck, D. Löhe, J. Luft, and I. Henne: Mater. Sci. Eng. A, 2007, vols. 468–470, pp. 184–92.

    Google Scholar 

  25. 25.T. Beck, I. Henne, and D. Löhe: Mater. Sci. Eng. A, 2008, vols. 483–484, pp. 382–86.

    Google Scholar 

  26. L. Salvo, P. Cloetens, E. Maire, S. Zabler, J.J. Blandin, J.Y. Buffière, W. Ludwig, E. Boller, D. Bellet, and C. Josserond: Nucl. Instrum. Meth. Phys. Res. Sect. B Beam Interact. Mater. At., 2003, vol. 200, pp. 273–86.

  27. 27.Y. Zhao, Z. Wang, C. Zhang, and W. Zhang: J. Alloys Compd., 2019, vol. 777, pp. 1054–65.

    CAS  Google Scholar 

  28. 28.F. Chen, F. Mao, Z. Chen, J. Han, G. Yan, T. Wang, and Z. Cao: J. Alloys Compd., 2015, vol. 622, pp. 831–36.

    CAS  Google Scholar 

  29. 29.J.-Y. Buffiere, E. Maire, J. Adrien, J.-P. Masse, and E. Boller: Exp. Mech., 2010, vol. 50, pp. 289–305.

    Google Scholar 

  30. 30.N. Limodin, J. Réthoré, J.-Y. Buffière, F. Hild, S. Roux, W. Ludwig, J. Rannou, and A. Gravouil: Acta Mater., 2010, vol. 58, pp. 2957–67.

    CAS  Google Scholar 

  31. 31.N. Limodin, J. Réthoré, J. Adrien, J.-Y. Buffière, F. Hild, and S. Roux: Exp. Mech., 2010, vol. 51, pp. 959–70.

    Google Scholar 

  32. 32.H.A. Bale, A. Haboub, A.A. MacDowell, J.R. Nasiatka, D.Y. Parkinson, B.N. Cox, D.B. Marshall, and R.O. Ritchie: Nat. Mater., 2013, vol. 12, pp. 40–46.

    CAS  Google Scholar 

  33. 33.S. Dezecot, V. Maurel, J.-Y. Buffiere, F. Szmytka, and A. Koster: Acta Mater., 2017, vol. 123, pp. 24–34.

    CAS  Google Scholar 

  34. 34.V. Mazars, O. Caty, G. Couégnat, A. Bouterf, S. Roux, S. Denneulin, J. Pailhès, and G.L. Vignoles: Acta Mater., 2017, vol. 140, pp. 130–39.

    CAS  Google Scholar 

  35. L. Wang: Ph.D. Thesis, Ecole Centrale de Lille, Lille, France, 2015.

  36. 36.L. Wang, N. Limodin, A. El Bartali, J.-F. Witz, R. Seghir, J.-Y. Buffiere, and E. Charkaluk: Mater. Sci. Eng. A, 2016, vol. 673, pp. 362–72.

    CAS  Google Scholar 

  37. J. Lachambre: Ph.D. Thesis, INSA Lyon, Villeurbanne, Cedex, France, 2014.

  38. Feature Extraction, https://imagej.net/Feature_Extraction. Accessed 11 Apr 2020.

  39. BUnwarpJ–ImageJ, https://imagej.net/BUnwarpJ. Accessed 11 Apr 2020.

  40. 40.B.K. Bay, T.S. Smith, D.P. Fyhrie, and M. Saad: Exp. Mech., 1999, vol. 39, pp. 217–26.

    Google Scholar 

  41. 41.B. Pan, D. Wu, and Z. Wang: Meas. Sci. Technol., 2012, vol. 23, p. 045002.

    Google Scholar 

  42. R. Seghir, J.F. Witz, and S. Coudert: YaDICs - Digital Image Correlation 2/3D Software. 2014. http://yadics.univ-lille1.fr/wordpress/?page_id=2.

  43. 43.S. Dezecot, J.-Y. Buffiere, A. Koster, V. Maurel, F. Szmytka, E. Charkaluk, N. Dahdah, A. El Bartali, N. Limodin, and J.-F. Witz: Scripta Mater., 2016, vol. 113, pp. 254–58.

    CAS  Google Scholar 

  44. 44.N. Limodin, J. Réthoré, J.-Y. Buffière, A. Gravouil, F. Hild, and S. Roux: Acta Mater., 2009, vol. 57, pp. 4090–4101.

    CAS  Google Scholar 

  45. 45.S.G. Rabinovich: Measurement Errors and Uncertainties, Springer, New York, NY, 2006.

    Google Scholar 

  46. 46.F. Amiot, M. Bornert, P. Doumalin, J.-C. Dupré, M. Fazzini, J.-J. Orteu, C. Poilâne, L. Robert, R. Rotinat, E. Toussaint, B. Wattrisse, and J.S. Wienin: Strain, 2013, vol. 49, pp. 483–96.

    Google Scholar 

  47. N. Limodin, A. El Bartali, L. Wang, J. Lachambre, J.-Y. Buffiere, and E. Charkaluk: Nucl. Instrum. Meth. Phys. Res. Sect. B Beam Interact. Mater. At., 2014, vol. 324, pp. 57–62.

  48. A.E. Bartali: Ph.D. Thesis, Ecole Centrale de Lille, Lille, France, 2007.

  49. 49.S. Roux, F. Hild, P. Viot, and D. Bernard: Compos. Part Appl. Sci. Manuf., 2008, vol. 39, pp. 1253–65.

    Google Scholar 

  50. 50.J.-C. Passieux and J.-N. Périé: Int. J. Numer. Meth. Eng., 2012, vol. 92, pp. 531–50.

    Google Scholar 

  51. L.A. Gomes Perini, J.-C. Passieux, and J.-N. Périé: Strain, 2014, vol. 50, pp. 355–67.

  52. 52.C.-L. Chen, A. Richter, and R.C. Thomson: Intermetallics, 2009, vol. 17, pp. 634–41.

    Google Scholar 

  53. 53.C.-L. Chen, A. Richter, and R.C. Thomson: Intermetallics, 2010, vol. 18, pp. 499–508.

    CAS  Google Scholar 

  54. 54.K. Gall, M. Horstemeyer, D.L. McDowell, and J. Fan: Mech. Mater., 2000, vol. 32, pp. 277–301.

    Google Scholar 

  55. 55.R. Prasannavenkatesan, J. Zhang, D.L. McDowell, G.B. Olson, and H.-J. Jou: Int. J. Fatigue, 2009, vol. 31, pp. 1176–89.

    CAS  Google Scholar 

  56. 56.Q.Y. Wang, C. Bathias, N. Kawagoishi, and Q. Chen: Int. J. Fatigue, 2002, vol. 24, pp. 1269–74.

    CAS  Google Scholar 

  57. J. Barrirero, M. Engstler, and F. Mücklich: in Light Metals 2013, B.A. Sadler, ed., Wiley, Hoboken, NJ, 2013, pp. 289–96.

  58. 58.C.M. Dinnis, J.A. Taylor, and A.K. Dahle: Mater. Sci. Eng. A, 2006, vol. 425, pp. 286–96.

    Google Scholar 

  59. J.A. Taylor: Australian Foundry Institute, Innisfail, Queensland, Australia, 2004, pp. 148–57.

  60. 60.M.J. Caton, J.W. Jones, J.M. Boileau, and J.E. Allison: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 3055–68.

    CAS  Google Scholar 

  61. 61.K. Gall, N. Yang, M. Horstemeyer, D.L. McDowell, and J. Fan: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 3079–88.

    CAS  Google Scholar 

  62. T.O. Mbuya: Ph.D. Thesis, University of Southampton, Southampton, United Kingdom, 2011.

  63. J.K. Miller and R. Delos: Mech. Eng. Publ., 1986, p. 215.

  64. 64.S. Joseph, S. Kumar, V.S. Bhadram, and C. Narayana: J. Alloys Compd., 2015, vol. 625, pp. 296–308.

    CAS  Google Scholar 

  65. 65.S. Joseph and S. Kumar: J. Mater. Eng. Perform., 2015, vol. 24, pp. 253–60.

    CAS  Google Scholar 

  66. 66.M.G. Mueller, G. Žagar, and A. Mortensen: Acta Mater., 2018, vol. 143, pp. 67–76.

    CAS  Google Scholar 

Download references

Acknowledgments

This research work was funded by the INDiANA-ANR project (Grant No. ANR-12-RMNP-0011) and PSA Peugeot Citroën. The authors thank TOMCAT beamline at Swiss Light Source for providing SR-CT beamtime and the China Scholarship Council for funding the Ph.D. thesis of Long Wang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted January 28, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Limodin, N., El Bartali, A. et al. Application of Synchrotron Radiation–Computed Tomography In-Situ Observations and Digital Volume Correlation to Study Low-Cycle Fatigue Damage Micromechanisms in Lost Foam Casting A319 Alloy. Metall Mater Trans A 51, 3843–3857 (2020). https://doi.org/10.1007/s11661-020-05839-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05839-5

Navigation