Skip to main content
Log in

Strain Localization During Compressive Deformation of Mg-Gd Alloy

  • Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Strain localization occurring at advanced deformation under compression of Mg-0.28 at. pctGd alloy has been studied. The strain localization develops in previously twinned microstructure in the form of shear bands (SBs) represented by narrow, heterogeneous zones of localized deformation. The onset of shear banding appears when the work hardening capacity of the material is exhausted. SBs are promoted by activation of high-stress contraction and double twins and are 18 pct harder than the surrounding parent material. It is shown that the development of strain localization delays the failure, which is attributed to the strengthening effect of SBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. M.R. Barnett, M.D. Nave and C.J. Bettles: Mater. Sci. Eng. A, 2004, vol. 386, pp. 205–11.

    Article  Google Scholar 

  2. L. Chang, E. Shang, Y. Wang, X. Zhao and M. Qi: Mater. Charact., 2009, vol. 60, pp. 487–91.

    Article  CAS  Google Scholar 

  3. D. Ando, J. Koike and Y. Sutou: Mater. Sci. Eng. A, 2014, vol. 600, pp. 145–52.

    Article  CAS  Google Scholar 

  4. A. Kula, X. Jia, R. Mishra and M. Niewczas: Int. J. Plast., 2017, vol. 92, pp. 96–121.

    Article  CAS  Google Scholar 

  5. S. Sandlöbes, S. Zaefferer, I. Schestakow, S. Yi and R. Gonzalez-Martinez: Acta Mater., 2011, vol. 59, pp. 429–39.

    Article  Google Scholar 

  6. S. Sandlöbes, M. Friák, J. Neugebauer and D. Raabe: Mater. Sci. Eng. A, 2013, vol. 576, pp. 61–68.

    Article  Google Scholar 

  7. F. Wang, S. Sandlöbes, M. Diehl, L. Sharma, F. Roters and D. Raabe: Acta Mater., 2014, vol. 80, pp. 77–93.

    Article  CAS  Google Scholar 

  8. M. Niewczas, A. Kula, H. Kitahara and S. Ando: Acta Mater., 2019, vol. 164, pp. 714–27.

    Article  CAS  Google Scholar 

  9. J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama and K. Higashi: Acta Mater., 2003, vol. 51, pp. 2055–65.

    Article  CAS  Google Scholar 

  10. M.R. Barnett: Mater. Sci. Eng. A, 2007, vol. 464, pp. 8–16.

    Article  Google Scholar 

  11. H. Kim, J.H. Lee, C. Lee, W. Bang, S. Ahn and Y. Chang: Mater. Sci. Eng. A, 2012, vol. 558, pp. 431–38.

    Article  CAS  Google Scholar 

  12. Y.B. Chun and C.H.J. Davies: Mater. Sci. Eng. A, 2012, vol. 556, pp. 253–59.

    Article  CAS  Google Scholar 

  13. C. Silva, A. Kula, R. Mishra and M. Niewczas: J. Alloys Compd., 2016, vol. 687, pp. 548–61.

    Article  CAS  Google Scholar 

  14. S. Liang, X. Wang, H. Zurob and N. Bassim: Metall. Mater. Trans. A, 2018, vol. 49, pp. 3674–82.

    Article  CAS  Google Scholar 

  15. R.R. Keller and R.H. Geiss: J. Microsc., 2012, vol. 245, pp. 245–51.

    Article  CAS  Google Scholar 

  16. P.W. Trimby: Ultramicroscopy, 2012, vol. 120, pp. 16–24.

    Article  CAS  Google Scholar 

  17. T. Tokarski, G. Cios, A. Kula and P. Bała: Mater. Charact., 2016, vol. 121, pp. 231–36.

    Article  CAS  Google Scholar 

  18. G.C. Sneddon, P.W. Trimbya and J.M. Cairney: Mater. Sci. Eng. R, 2016, vol. 110, pp. 1–12.

    Article  Google Scholar 

  19. A. Kula, K. Noble, R. Mishra and M. Niewczas: Philos. Mag., 2016, vol. 96, pp. 134–65.

    Article  CAS  Google Scholar 

  20. C. Silva, A. Kula, R. Mishra and M. Niewczas: Mater. Sci. Eng. A, 2017, vol. 692, pp. 199–213.

    Article  CAS  Google Scholar 

  21. C. Silva, A. Kula, R. Mishra and M. Niewczas: J. Alloys Compd., 2018, vol. 761, pp. 58–70.

    Article  CAS  Google Scholar 

  22. A. Kula, C. Silva and M. Niewczas: J. Alloys Compd., 2017, vol. 727, pp. 642–57.

    Article  CAS  Google Scholar 

  23. S.G. Hong, S.H. Park and C.S. Lee: Acta Mater., 2010, vol. 58, pp. 5873–85.

    Article  CAS  Google Scholar 

  24. L. Jiang, J.J. Jonas, A.A. Luo, A.K. Sachdev and S. Godet: Mater. Sci. Eng. A, 2007, vol. 445, pp. 302–9.

    Article  Google Scholar 

  25. H. Halim, D.S. Wilkinson and M. Niewczas: Acta Mater., 2007, vol. 55, pp. 4151–60.

    Article  CAS  Google Scholar 

  26. M. Jobba, R.K. Mishra and M. Niewczas: Int. J. Plast., 2015, vol. 65, pp. 43–60.

    Article  CAS  Google Scholar 

  27. Z. Basinski, M. Szczerba and J. Embury: Philos. Mag. A, 1997, vol. 76, pp. 743–52.

    Article  CAS  Google Scholar 

  28. A. Kula, X. Jia, R.K. Mishra and M. Niewczas: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 3333–42.

    Article  Google Scholar 

  29. H. Yoshinaga, T. Obara and S. Morozumi: Mater. Sci. Eng., 1973, vol. 12, pp. 255–64.

    Article  CAS  Google Scholar 

  30. P. Cizek and M. Barnett: Scr. Mater., 2008, vol. 59, pp. 959–62.

    Article  CAS  Google Scholar 

  31. G. Martin, C.W. Sinclair, W.J. Poole and H. Azizi-Alizamini: JOM, 2015, vol. 67, pp. 1761–73.

    Article  CAS  Google Scholar 

  32. S. Niknejad, S. Esmaeili and N.Y. Zhou: Acta Mater., 2016, vol. 102, pp. 1–16.

    Article  CAS  Google Scholar 

  33. A.A. Salem, S. Kalidindi, R. Doherty and S. Semiatin: Metall. Mater. Trans. A, 2006, vol. 37, pp. 259–68.

    Article  Google Scholar 

  34. Z. Basinski, M. Szczerba, M. Niewczas, J. Embury and S. Basinski: Rev. Metall., 1996, vol. 94, pp. 1037–43.

    Article  Google Scholar 

  35. M. Niewczas: Dislocations and Twinning in Face Centered Cubic Crystals, Dislocations in Solids, vol. 13, Elsevier, 2007, pp. 263–364.

  36. D. Bhattacharyya, E.K. Cerreta, R. McCabe, M. Niewczas, G.T. Gray, III, A. Misra and C.N. Tome: Acta Mater., 2009, vol. 57, pp. 305–15.

    Article  CAS  Google Scholar 

  37. M. Niewczas: Acta Mater., 2010, vol. 58, pp. 5848–57.

    Article  CAS  Google Scholar 

  38. F. Hiura, R.K. Mishra, M. Lukitsch and M. Niewczas: Magnesium Technol. 2012, 2012, pp. 117–19.

    Google Scholar 

Download references

Financial support from Natural Sciences and Engineering Research Council of Canada (NSERC) and GM Canada under the NSERC-GM CRD grant: “Origins of strength and ductility in Mg-RE solid solutions” is acknowledged.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Niewczas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted January 16, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kula, A., Tokarski, T. & Niewczas, M. Strain Localization During Compressive Deformation of Mg-Gd Alloy. Metall Mater Trans A 51, 3742–3748 (2020). https://doi.org/10.1007/s11661-020-05815-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05815-z

Navigation