Skip to main content
Log in

Microstructural, Morphological and Electrochemical Effects of Graphene Oxide Incorporation in Tin-Cobalt Composite Coatings

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Effect of incorporation of graphene oxide (GO) on the evolution of morphology, phase constitution, microstructure and corrosion properties of SnCo-GO composite coating was investigated. SnCo-GO composite coatings containing different amounts of graphene oxide were electrodeposited over mild steel substrate using electrolyte with different concentrations of dispersed graphene oxide (0.0625, 0.125, 0.1875, 0.25, 0.3125, 0.5, 0.625 g/L). Morphological examination revealed that lesser additions of GO increased the coating compactness and uniformity whereas higher amounts of GO produced surface defects in the composite coatings. Structural characterization revealed the presence of primarily two different intermetallic phases in the coating microstructure: Co2Sn phase and Co3Sn2 phase. It was observed that the phase fraction of the relatively more inert Co3Sn2 phase increased monotonically with increase in the amount of GO in the coatings. Microstructural investigations revealed that in the pristine SnCo coating the Co2Sn phase is present at the grain boundaries of the Co3Sn2 phase grains. Incorporation of GO altered the coating microstructure considerably leading to the formation of a layered microstructure where the elongated Co2Sn phase grains were present beneath laterally elongated grains of the Co3Sn2 phase. Electrochemical analysis performed using the Tafel polarization and impedance spectroscopy measurements showed that the corrosion properties of the coating were highly sensitive to the amount of GO present in the coating. Initial addition of GO increased the corrosion resistance till an optimum GO concentration for which highest corrosion resistance was achieved. Further addition of GO beyond the optimum lead to monotonic decrease in the corrosion resistance to values which were lower than the pristine SnCo coating. Initial increase in the corrosion resistance was attributed to uniform distribution of GO in the coating, increase in the uniformity and compactness of the coatings, increase in the fraction of the relatively more inert Co3Sn2 phase in the coating microstructure and formation of a layered microstructure in which the exposed coating surface contained the relatively more inert Co3Sn2 phase. Decrease in the corrosion resistance beyond the “optimum” was due to increase in the coating surface defects due to the deposition of agglomerated GO and galvanic coupling due to increase in the cathodic (GO) to anodic (metal) phase area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. D.E. Tallman, G. Spinks, A. Dominis, and G.G. Wallace: J. Solid State Electrochem., 2002, vol. 6, pp. 73–84.

    CAS  Google Scholar 

  2. M. Pushpavanam, V. Raman, B.A. Shenoi: Surf. Technol., 1981, vol. 12, pp. 351–60.

    CAS  Google Scholar 

  3. L. Benea: Metall. Mater. Trans. A, 2013, vol. 44, pp. 1114–22.

    Google Scholar 

  4. J.O. Nielsen, P. Møller, and K. Pantleon: Metall. Mater. Trans. A, 2019, vol. 50, pp. 3785–93.

    Google Scholar 

  5. L. Tian, G. Xie, X.H. Yu, R.X. Li, and G.S. Zeng: Metall. Mater. Trans. A, 2012, vol. 43, pp. 555–60.

    Google Scholar 

  6. M.Y. Rekha, A. Kamboj, and C. Srivastava: Thin Solid Films, 2018, vol. 653, pp. 82–92.

    CAS  Google Scholar 

  7. P.C. Huang, K.H. Hou, G.L. Wang, M.L. Chen, and J.R. Wang: Int. J. Electrochem. Sci., 2015, vol. 10, pp. 4972–84.

    CAS  Google Scholar 

  8. S. Rashmi, L. Elias, and A. Chitharanjan-Hegde: Eng. Sci. Technol. an Int. J., 2017, vol. 20, pp. 1227–32.

    Google Scholar 

  9. A. Sharma, S. Bhattacharya, S. Das, and K. Das: Metall. Mater. Trans. A, 2014, vol. 45, pp. 4610–22.

    Google Scholar 

  10. M. Uysal: Metall. Mater. Trans. A, 2019, vol. 50, pp. 2331–41.

    Google Scholar 

  11. J.D.C. Hemstey and M. E. Roper: Trans. Instit. Metal. Finish., 1979, vol. 57, pp. 77-80.

    Google Scholar 

  12. S. Abd El Rehim, S.A. Refaey, G. Schwitzgebel, F. Taha, M.B. Saleh: J. Appl. Electrochem., 1996, vol. 26 (4), pp. 413-18.

    Google Scholar 

  13. G. I. Medvedev and N. A. Makrushin: Russ. J. Appl. Chem., 2012, vol. 85 (1), pp. 52-56.

    CAS  Google Scholar 

  14. E. Gómez, E. Guaus, J. Torrent, X. Alcobe, and E. Vallés: J. Appl. Electrochem., 2001, vol. 31, pp. 349–54.

    Google Scholar 

  15. L. Anicai, S. Costovici, A. Cojocaru, A. Manea and T. Visan: Trans. Inst. Met. Finish., 2015, vol. 93 (6), pp. 302-12.

    CAS  Google Scholar 

  16. J.A. Jaén, M.L. Varsányi, E. Kovács, I. Czakó-Nagy, A. Buzás, A. Vértes and L. Kiss: Electrochim. Acta, 1984, vol. 29 (8), pp. 1119–22.

    Google Scholar 

  17. M. Sujatha, R. Sabitha and M. Pushpavanam: Trans. Inst. Met. Finish., 2000, vol. 78 (1), pp. 49-52.

    CAS  Google Scholar 

  18. A. Survila, Z. Mochus, R. Juskenas and V. Jasulaitiene: J. Appl. Electrochem., 2001, vol. 31, pp. 1109-16.

    CAS  Google Scholar 

  19. N.M. Pereira, T. Sousa, C.M. Pereira, P. Araujo, A.F. Silva: Cryst. Growth Des., 2017, vol. 17, pp. 5208-15.

    CAS  Google Scholar 

  20. D. Zhang, M. Qaim, W. Gao, W.Zhang, A. B. Owusu, Z. He and Y. Wang: Mater. Res. Express, 2019, vol. 12, p. 126417.

    Google Scholar 

  21. C.L. Lee, D.H. Nam, J.Y. Eom, and H.S. Kwon: Electron. Mater. Lett., 2016, vol. 12 (5), pp. 622–27.

    CAS  Google Scholar 

  22. L. Huang, Y. Yang, L.J. Xue, H.B. Wei, F.S. Ke, J.T. Li, and S.G. Sun: Electrochem. commun., 2009, vol. 11, pp. 6–9.

    CAS  Google Scholar 

  23. J. Zhao, X. Xie, and C. Zhang: Corros. Sci., 2017, vol. 114, pp. 146–55.

    CAS  Google Scholar 

  24. J.H. Park and J.M. Park: Surf. Coatings Technol., 2014, vol. 254, pp. 167–74.

    CAS  Google Scholar 

  25. F.A. Ghauri, M.A. Raza, M.S. Baig, and S. Ibrahim: Mater. Res. Express, 2017, vol. 4, pp. 125601.

    Google Scholar 

  26. [26] Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, and R.S. Ruoff: Adv. Mater., 2010, vol. 22, pp. 3906–24.

    CAS  Google Scholar 

  27. X. Zhao, Z. Jin, B. Zhang, X. Zhai, S. Liu, X. Sun, Q. Zhu, and B. Hou: RSC Adv., 2017, vol. 7, pp. 33764–74.

    CAS  Google Scholar 

  28. B. Ramezanzadeh, E. Ghasemi, M. Mahdavian, E. Changizi, and M.H. Mohamadzadeh-Moghadam: Carbon, 2015, vol. 93, pp. 555–73.

    CAS  Google Scholar 

  29. R.V. Dennis, L.T. Viyannalage, A.V. Gaikwad, T.K. Rout and S. Banerjee: Am. Ceram. Soc. Bull., 2013, vol. 92, pp. 18-24.

    CAS  Google Scholar 

  30. R.V. Dennis, V. Patil, J.L. Andrews, J.P. Aldinger, G.D. Yadav and S. Banerjee: Mater. Res. Express., 2015, vol. 2, pp. 032001.

    Google Scholar 

  31. X. Shen, J. Sheng, Q. Zhang, Q. Xu, and D. Cheng: J. Mater. Eng. Perform., 2018, vol. 27, pp. 3750–61.

    CAS  Google Scholar 

  32. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, and R.S. Ruoff: Science, 2009, vol. 324, pp. 1312 –14.

    CAS  Google Scholar 

  33. A. Yadav, R. Kumar, H.K. Choudhary, and B. Sahoo: Carbon N. Y., 2018, vol. 140, pp. 477–87.

    CAS  Google Scholar 

  34. S. Chen, L. Brown, M. Levendorf, W. Cai, S.Y. Ju, J. Edgeworth, X. Li, C.W. Magnuson, A. Velamakanni, R.D. Piner, J. Kang, J. Park, and R.S. Ruoff: ACS Nano, 2011, vol. 5, pp. 1321–27.

    CAS  Google Scholar 

  35. L. Yang, Y. Wan, Z. Qin, Q. Xu, and Y. Min: Corros. Sci., 2018, vol. 130, pp. 85–94.

    CAS  Google Scholar 

  36. M. Rashad, F. Pan, M. Asif, and X. Chen: J. Magnes. Alloy., 2017, vol. 5, pp. 271–6.

    CAS  Google Scholar 

  37. A. Ambrosi, C.K. Chua, A. Bonanni, and M. Pumera: Chem. Rev., 2014, vol. 114, pp. 7150–88.

    CAS  Google Scholar 

  38. C. Liu, D. Wei, X. Huang, Y. Mai, L. Zhang, and X. Jie: J. Mater. Res., 2019, vol. 34, pp. 1726–33.

    CAS  Google Scholar 

  39. S. Arora and C. Srivastava: Thin Solid Films, 2019, vol. 677, pp. 45-54.

    CAS  Google Scholar 

  40. A. Gupta and C. Srivastava: Surf. Coatings Technol., 2019, vol. 375, pp. 573–88.

    CAS  Google Scholar 

  41. K.S. Jyotheender and C. Srivastava: Compos. Part B Eng., 2019, vol. 175, pp. 107145.

    CAS  Google Scholar 

  42. R. Romero-Aburto, L.B. Alemany, T.K. Weldeghiorghis, S. Ozden, Z. Peng, A. Lherbier, A.R. Botello-Méndez, C.S. Tiwary, J. Taha-Tijerina, Z. Yan, M. Tabata, J.C. Charlier, J.M. Tour, and P.M. Ajayan: ACS Nano, 2015, vol. 9, pp. 7009–18.

    CAS  Google Scholar 

  43. [43] M. Veerapandian, M.H. Lee, K. Krishnamoorthy, and K. Yun: Carbon N. Y., 2012, vol. 50, pp. 4228–38.

    CAS  Google Scholar 

  44. W. He, L. Zhu, H. Chen, H. Nan, W. Li, H. Liu, and Y. Wang: Appl. Surf. Sci., 2013, vol. 279, pp. 416–23.

    CAS  Google Scholar 

  45. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, and J.M. Tour: ACS Nano, 2010, vol. 4 (8), pp. 4806–14.

    CAS  Google Scholar 

  46. W. H. Bragg and W. L. Bragg: Proc. R. Soc. A, 1913, vol. 88, pp. 428-438.

    CAS  Google Scholar 

  47. S.J. Mu, Y.C. Su, L.H. Xiao, S.D. Liu, T. Hu, and H.B. Tang: Chinese Phys. Lett., 2013, vol. 30, pp. 9–12.

    Google Scholar 

  48. T. Rattana, S. Chaiyakun, N. Witit-Anun, N. Nuntawong, P. Chindaudom, S. Oaew, C. Kedkeaw, and P. Limsuwan: Procedia Eng., 2012, vol. 32, pp. 759–64.

    CAS  Google Scholar 

  49. Q. Lai, S. Zhu, X. Luo, M. Zou, and S. Huang: AIP Adv., 2012, vol. 2 (3), pp. 1–6.

    CAS  Google Scholar 

  50. Y. C. Zhou and M. N. Rahaman: J. Mater. Res., 1993, vol. 8 (7), pp. 1680-86.

    CAS  Google Scholar 

  51. R. Al-Gaashani, A. Najjar, Y. Zakaria, S. Mansour, and M.A. Atieh: Ceram. Int., 2019, vol. 45, pp. 14439–48.

    CAS  Google Scholar 

  52. A. Monshi, M.R. Foroughi, and M.R. Monshi: World J. Nano Sci. Eng., 2012, vol. 02, pp. 154–60.

    Google Scholar 

  53. L. Muresan, L. Oniciu, M. Froment, and G. Maurin: Electrochim. Acta, 1992, vol. 37, pp. 2249–54.

    CAS  Google Scholar 

  54. Y. Gao, X. Ren, J. Wu, T. Hayat, A. Alsaedi, C. Cheng, and C. Chen: Environ. Sci. Nano, 2018, vol. 5, pp. 362–71.

    CAS  Google Scholar 

  55. R. Sitko, E. Turek, B. Zawisza, E. Malicka, E. Talik, J. Heimann, A. Gagor, B. Feist, and R. Wrzalik: Dalt. Trans., 2013, vol. 42, pp. 5682–89.

    CAS  Google Scholar 

  56. [56] P. Janik, B. Zawisza, E. Talik, and R. Sitko: Microchim. Acta, 2018, vol. 185, pp. 1–8.

    CAS  Google Scholar 

  57. Rabab M. El-Sherif and Waheed A. Badawy: Int. J. Electrochem. Sci., 2011, vol. 6, pp. 6469–82.

    CAS  Google Scholar 

  58. X. Lin, Y. Gao, M. Jiang, Y. Zhang, Y. Hou, W. Dai, S. Wang, and Z. Ding: Appl. Catal. B Environ., 2018, vol. 224, pp. 1009–16.

    CAS  Google Scholar 

  59. P. Wang, D. Zhang, R. Qiu, Y. Wan, and J. Wu: Corros. Sci., 2014, vol. 80, pp. 366–73.

    CAS  Google Scholar 

Download references

Acknowledgments

Authors acknowledge the research grant received from the SERB, Govt. of India. Electron microscopy facilities at the AFMM, IISc are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandan Srivastava.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted January 14, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, A., Srivastava, C. Microstructural, Morphological and Electrochemical Effects of Graphene Oxide Incorporation in Tin-Cobalt Composite Coatings. Metall Mater Trans A 51, 4257–4273 (2020). https://doi.org/10.1007/s11661-020-05805-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05805-1

Navigation