Skip to main content

New Opportunities in Refractory Alloys

Abstract

For decades, the promise of refractory alloys (robust structural materials for use above 1500 K (1200 °C)) has been hampered by concurrent requirements for fabricability via ingot metallurgy and oxidation resistance. These constraints have thus far proven impossible to meet in a single material. The work herein demonstrates that the advent of economical powder feedstocks and consolidation methods, such as additive manufacturing (AM), effectively removes the constraints preventing widespread utilization of high-strength refractory alloys into aerospace, defense, and space access applications. High-purity, spherical refractory-alloy powders (e.g. the Nb-10Hf-1Ti alloy ATI C103™) were made via both atomization and plasma spheroidization and consolidated using a variety of methods. Consolidated material shows comparable and sometimes superior high temperature performance to equivalent wrought material. The availability of cost-effective powder synthesis techniques enables the elimination of critical barriers in fabrication: namely the requirement for hot and cold working. The availability of AM and hot isostatic pressing expands the design space for high-strength refractory alloys and makes the adoption of new paradigms in alloy design, such as refractory complex concentrated alloys, plausible. Going forward, the most difficult challenge, oxidation, can be tackled with the new approaches that are now available.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Notes

  1. The C103 alloy, comprising Nb-10Hf-1Ti, was the third “Cb” alloy in an extensive alloy development campaign by ATI (then Wah Chang) and Boeing from 1959-1967 that included Mo, W, Ta and Nb alloys.

  2. Castheon, Inc., Thousand Oaks, CA.

  3. N.B. Niobium alloys are Class I solid solutions wherein creep rate is dominated by dislocation glide and thus is insensitive to grain size.[113] Unfortunately, there is then no obvious performance benefit to achieving the directionally solidified structure in creep dominated high temperature service.

References

  1. T.A. Moss, R.L. Davies, and G.J. Barna: in Report No. NASA-SP-245, NASA, Cleveland, OH, 1970.

  2. R.A. Perkins and G.H. Meier: JOM, 1990, vol. 42, pp. 17–21.

    CAS  Article  Google Scholar 

  3. R.E. Engler: Atomic Power in Space: A History, Washington, DC, 1987.

  4. R.A. Perkins: Proc. Symp. Adv. Compact React. Syst., 1983, pp. 282–325.

  5. V.G. Grigorovich and E.N. Sheftel: Metal Science and Heat Treatment, 1982, vol. 24, pp. 472–8.

    Article  Google Scholar 

  6. R.W. Buckman: JOM, 2000, vol. 52, pp. 40–1.

    CAS  Article  Google Scholar 

  7. L. Schweikart: The Hypersonic Revolution - Case Studies in the History of Hypersonic Technology - Volume III - The Quest for the Orbital Jet: The National Aero-Space Plane Program, Vol. 3, Air Force History and Museums Program, Bolling AFB, 1998.

  8. W.B. Gero: in Control of Crystal Development in Refractory Metals US 1602526, United States Patent and Trademark Office, USA, 1926.

    Google Scholar 

  9. Z. Jeffries: Trans. AIME, 1924, vol. 70, p. 303.

    Google Scholar 

  10. T.E. Tietz and J.W. Wilson: Behavior and Properties of Refractory Metals, Standford University Press, Standford, CA, 1965.

    Google Scholar 

  11. J.R. Hughes: in Materials Research Society Symposium Proceedings, vol. 322, 1994, pp. 363–75.

  12. E.A. Loria: JOM, 1987, vol. 39, pp. 22–6.

    CAS  Article  Google Scholar 

  13. J. Wittenauer: JOM, 1990, vol. 42, pp. 7–7.

    Article  Google Scholar 

  14. D.C. Goldberg, G. Dicker, and S.A. Worcester: Nuclear Engineering and Design, 1972, vol. 22, pp. 124–37.

    Article  Google Scholar 

  15. T.G. Nieh and J. Wadsworth: in MRS Proceedings, vol. 322, 1993, p. 315.

  16. R. Smith: Journal of The Less-Common Metals, 1960, vol. 2, pp. 191–206.

    CAS  Article  Google Scholar 

  17. J. Wadsworth, T.G. Nieh, and J.J. Stephens: International Materials Reviews, 1988, vol. 33, pp. 131–50.

    CAS  Article  Google Scholar 

  18. R.G. Frank: in Refractory Metal Alloys Metallurgy and Technology, I. Machlin, R.T. Begley, and E.D. Weisert, eds., Springer, Boston, MA, 1968, pp. 325–72.

  19. J.J. Harwood: in The Metal Molybdenum, J. Hardwood, Julius, ed., American Society for Metals, Detroit, Michigan, 1958, pp. 420–59.

  20. I.L. Shabalin: in Ultra-High Temperature Materials I, Springer Netherlands, Dordrecht, 2014, pp. 531–607.

    Book  Google Scholar 

  21. R.E. Bedford, G. Bonnier, H. Maas, and F. Pavese: Metrologia, 1996, vol. 33, pp. 133–54.

    Article  Google Scholar 

  22. L.P. Jahnke: in High temperature materials II, G.M. Ault, W.F. Barclay, and H.P. Munger, eds., American Institute of Mining, Metallurgical, and Petroleum Engineers, Cleveland, OH, 1963, pp. 284–306.

  23. M.G. Hebsur and R.H. Titran: in Report No. NASA-TM-101954, NASA Lewis Research Center, Cleveland, OH, 1988.

  24. J. Wadsworth, C.A. Roberts, and E.H. Rennhack: Journal of Materials Science, 1982, vol. 17, pp. 2539–46.

    Article  Google Scholar 

  25. C.C. Wojcik: in International Powder Metallurgy, vol. 103, 1988, pp. 187–200.

  26. B.P. Bewlay, M.R. Jackson, J.-C. Zhao, P.R. Subramanian, M.G. Mendiratta, and J.J. Lewandowski: MRS Bulletin, 2011, vol. 28, pp. 646–53.

    Article  Google Scholar 

  27. B.P. Bewlay, M.R. Jackson, P.R. Subramanian, and J.C. Zhao: Metallurgical and Materials Transactions A, 2003, vol. 34, pp. 2043–52.

    Article  Google Scholar 

  28. D.L. Anton, D.B. Snow, L.H. Favrow, and A.F. Giamei: in Report No. R89-917437-3, United Technologies Research Center, East Hartford, CT, 1989.

  29. E.N. Sheftel and O.A. Bannykh: International Journal of Refractory Metals and Hard Materials, 1993, vol. 12, pp. 303–14.

    CAS  Article  Google Scholar 

  30. I.E. Anderson, E.M.H. White, and R. Dehoff: Current Opinion in Solid State and Materials Science, 2018, vol. 22, pp. 8–15.

    CAS  Article  Google Scholar 

  31. J. Dawes, R. Bowerman, and R. Trepleton: Johnson Matthey Technology Review, 2015, vol. 59, pp. 243–56.

    Article  Google Scholar 

  32. P. Sun, Z.Z. Fang, Y. Zhang, and Y. Xia: Jom, 2017, vol. 69, pp. 1853–60.

    CAS  Article  Google Scholar 

  33. W.E. Frazier: Journal of Materials Engineering and Performance, 2014, vol. 23, pp. 1917–28.

    CAS  Article  Google Scholar 

  34. T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, and W. Zhang: Progress in Materials Science, 2018, vol. 92, pp. 112–224.

    CAS  Article  Google Scholar 

  35. D.P. Barbis, R.M. Gasior, G.P. Walker, J.A. Capone, and T.S. Schaeffer: in Titanium Powder Metallurgy, Elsevier, Amsterdam, 2015, pp. 101–16.

    Book  Google Scholar 

  36. M. Boulos: Metal Powder Report, 2004, vol. 59, pp. 16–21.

    Article  Google Scholar 

  37. G. Lütjering and J.C. Williams: Titanium, 2nd edn., Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

    Google Scholar 

  38. P.L. Fauchais, J.V.R. Heberlein, and M.I. Boulos: Thermal Spray Fundamentals: From Powder to Part, Springer, New York, 2014.

    Book  Google Scholar 

  39. D.K. Bose: Mineral Processing and Extractive Metallurgy Review, 1992, vol. 10, pp. 217–37.

    Article  Google Scholar 

  40. M. Hohmann and N. Ludwig: in System for the Production of Powders from Metals US 5284329A, United States Patent and Trademark Office, City, 1994.

  41. S. Pleier, W. Goy, B. Schaub, M. Hohmann, M. Mede, and R. Schumann: Advances in Powder Metallurgy and Particulate Materials, 2004, vol. 1, pp. 2–49.

    Google Scholar 

  42. R. Gerling, M. Hohmann, and F.P. Schimansky: in Materials science forum, vol. 539, Trans Tech Publ, 2007, pp. 2693–98.

  43. M. Entezarian, F. Allaire, P. Tsantrizos, and R.A.L. Drew: JOM, 1996, vol. 48, pp. 53–5.

    CAS  Article  Google Scholar 

  44. P. Gradl, O. Mireles, and N. Andrews: in Report No. M19-7605, NASA Marshall Space Flight Center, Huntsville, AL, 2019.

  45. A. Bose, C.A. Schuh, J.C. Tobia, N. Tuncer, N.M. Mykulowycz, A. Preston, A.C. Barbati, B. Kernan, M.A. Gibson, and D. Krause: International Journal of Refractory Metals and Hard Materials, 2018, vol. 73, pp. 22–8.

    CAS  Article  Google Scholar 

  46. A. Iveković, N. Omidvari, B. Vrancken, K. Lietaert, L. Thijs, K. Vanmeensel, J. Vleugels, and J.-P. Kruth: International Journal of Refractory Metals and Hard Materials, 2018, vol. 72, pp. 27–32.

    Article  CAS  Google Scholar 

  47. A. V Müller, G. Schlick, R. Neu, C. Anstätt, T. Klimkait, J. Lee, B. Pascher, M. Schmitt, and C. Seidel: Nuclear Materials and Energy, 2019, vol. 19, pp. 184–8.

    Article  Google Scholar 

  48. C. Sungail and A.D. Abid: Met. Powder Rep., 2019, vol. 75, pp. 28-33.

    Article  Google Scholar 

  49. V. Livescu, C.M. Knapp, G.T. Gray III, R.M. Martinez, B.M. Morrow, and B.G. Ndefru: Materialia, 2018, vol. 1, pp. 15–24.

    Article  Google Scholar 

  50. D. Faidel, D. Jonas, G. Natour, and W. Behr: Additive Manufacturing, 2015, vol. 8, pp. 88–94.

    CAS  Google Scholar 

  51. L. Kaserer, J. Braun, J. Stajkovic, K.-H. Leitz, B. Tabernig, P. Singer, I. Letofsky-Papst, H. Kestler, and G. Leichtfried: International Journal of Refractory Metals and Hard Materials, 2019, vol. 84, p. 105000.

    CAS  Article  Google Scholar 

  52. C.A. Terrazas, J. Mireles, S.M. Gaytan, P.A. Morton, A. Hinojos, P. Frigola, and R.B. Wicker: The International Journal of Advanced Manufacturing Technology, 2016, vol. 84, pp. 1115–26.

    Google Scholar 

  53. R. Ebert, F. Ullmann, D. Hildebrandt, J. Schille, L. Hartwig, S. Kloetzer, A. Streek, and H. Exner: Journal of Laser Micro Nanoengineering, 2012, vol. 7, p. 38.

    CAS  Article  Google Scholar 

  54. K. Deprez, S. Vandenberghe, K. Van Audenhaege, J. Van Vaerenbergh, and R. Van Holen: Medical physics, 2013, vol. 40, p. 12501.

    Article  Google Scholar 

  55. X. Zhou, X. Liu, D. Zhang, Z. Shen, and W. Liu: Journal of Materials Processing Technology, 2015, vol. 222, pp. 33–42.

    CAS  Article  Google Scholar 

  56. C. Tan, K. Zhou, W. Ma, B. Attard, P. Zhang, and T. Kuang: Science and Technology of Advanced Materials, 2018, vol. 19, pp. 370–80.

    CAS  Article  Google Scholar 

  57. D. Wang, C. Yu, X. Zhou, J. Ma, W. Liu, and Z. Shen: Applied Sciences, 2017, vol. 7, p. 430.

    Article  CAS  Google Scholar 

  58. A.T. Sidambe, Y. Tian, P.B. Prangnell, and P. Fox: International Journal of Refractory Metals and Hard Materials, 2019, vol. 78, pp. 254–63.

    CAS  Article  Google Scholar 

  59. J. Braun, L. Kaserer, J. Stajkovic, K.-H. Leitz, B. Tabernig, P. Singer, P. Leibenguth, C. Gspan, H. Kestler, and G. Leichtfried: International Journal of Refractory Metals and Hard Materials, 2019, vol. 84, p. 104999.

    CAS  Article  Google Scholar 

  60. D.-Z. Wang, K.-L. Li, C.-F. Yu, J. Ma, W. Liu, and Z.-J. Shen: Acta Metallurgica Sinica (English Letters), 2019, vol. 32, pp. 127–35.

    CAS  Article  Google Scholar 

  61. D. Wang, Z. Wang, K. Li, J. Ma, W. Liu, and Z. Shen: Materials & Design, 2019, vol. 162, pp. 384–93.

    CAS  Article  Google Scholar 

  62. D. Gu, D. Dai, W. Chen, and H. Chen: Journal of Manufacturing Science and Engineering, 2016, vol. 138, p. 81003.

    Article  Google Scholar 

  63. B. Vrancken, W.E. King, and M.J. Matthews: Procedia CIRP, 2018, vol. 74, pp. 107–10.

    Article  Google Scholar 

  64. J.L. Johnson and T. Palmer: International Journal of Refractory Metals and Hard Materials, 2019, vol. 84, p. 105029.

    CAS  Article  Google Scholar 

  65. E. Martinez, L.E. Murr, J. Hernandez, X. Pan, K. Amato, P. Frigola, C. Terrazas, S. Gaytan, E. Rodriguez, F. Medina, and R.B. Wicker: Metallography, Microstructure, and Analysis, 2013, vol. 2, pp. 183–9.

    CAS  Article  Google Scholar 

  66. O.R. Terrazas, M.E. Zaun, R.S. Minisandram, and M.L. Lasonde: in Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications, Springer, 2018, pp. 977–86.

  67. L. Thijs, M.L.M. Sistiaga, R. Wauthle, Q. Xie, J.-P. Kruth, and J. Van Humbeeck: Acta Materialia, 2013, vol. 61, pp. 4657–68.

    CAS  Article  Google Scholar 

  68. L. Zhou, T. Yuan, R. Li, J. Tang, G. Wang, and K. Guo: Materials Science and Engineering: A, 2017, vol. 707, pp. 443–51.

    CAS  Article  Google Scholar 

  69. R. Wauthle, J. Van Der Stok, S.A. Yavari, J. Van Humbeeck, J.-P. Kruth, A.A. Zadpoor, H. Weinans, M. Mulier, and J. Schrooten: Acta biomaterialia, 2015, vol. 14, pp. 217–25.

    CAS  Article  Google Scholar 

  70. V.K. Balla, S. Bodhak, S. Bose, and A. Bandyopadhyay: Acta biomaterialia, 2010, vol. 6, pp. 3349–59.

    CAS  Article  Google Scholar 

  71. J. OH, T. ISHIMOTO, S. SUN, and T. NAKANO: Journal of Smart Processing, 2019, vol. 8, pp. 151–4.

    Article  Google Scholar 

  72. H. Dobbelstein, M. Thiele, E.L. Gurevich, E.P. George, and A. Ostendorf: Physics Procedia, 2016, vol. 83, pp. 624–33.

    CAS  Article  Google Scholar 

  73. H. Dobbelstein, E.L. Gurevich, E.P. George, A. Ostendorf, and G. Laplanche: Additive Manufacturing, 2018, vol. 24, pp. 386–90.

    CAS  Article  Google Scholar 

  74. H. Dobbelstein, E.L. Gurevich, E.P. George, A. Ostendorf, and G. Laplanche: Additive Manufacturing, 2019, vol. 25, pp. 252–62.

    CAS  Google Scholar 

  75. H. Zhang, W. Xu, Y. Xu, Z. Lu, and D. Li: The International Journal of Advanced Manufacturing Technology, 2018, vol. 96, pp. 461–74.

    Article  Google Scholar 

  76. V. V Popov, A. Katz-Demyanetz, A. Koptyug, and M. Bamberger: Heliyon, 2019, vol. 5, p. e01188.

    Article  Google Scholar 

  77. B. Dutta and F.H.S. Froes: Advanced Materials & Processes, 2014, vol. 172, pp. 18–23.

    CAS  Google Scholar 

  78. O.N. Senkov, D.B. Miracle, K.J. Chaput, and J.-P.P. Couzinie: Journal of Materials Research, 2018, vol. 33, pp. 1–37.

    Article  CAS  Google Scholar 

  79. D.B. Miracle and O.N. Senkov: Acta Materialia, 2017, vol. 122, pp. 448–511.

    CAS  Article  Google Scholar 

  80. J. Gao, C. Li, J. Dang, C. Guo, and Z. Du: Journal of Alloys and Compounds, 2018, vol. 768, pp. 316–22.

    CAS  Article  Google Scholar 

  81. O.N. Senkov, S. Gorsse, and D.B. Miracle: Acta Materialia, 2019, vol. 175, pp. 394–405.

    CAS  Article  Google Scholar 

  82. O.N. Senkov, C. Zhang, A.L. Pilchak, E.J. Payton, C. Woodward, and F. Zhang: Journal of Alloys and Compounds, 2019, vol. 783, pp. 729–42.

    CAS  Article  Google Scholar 

  83. F.G. Coury, T. Butler, K. Chaput, A. Saville, J. Copley, J. Foltz, P. Mason, K. Clarke, M. Kaufman, and A. Clarke: Materials & Design, 2018, vol. 155, pp. 244–56.

    CAS  Article  Google Scholar 

  84. H. Song, F. Tian, and D. Wang: Journal of Alloys and Compounds, 2016, vol. 682, pp. 773–7.

    CAS  Article  Google Scholar 

  85. H. Song, F. Tian, Q.-M. Hu, L. Vitos, Y. Wang, J. Shen, and N. Chen: Physical Review Materials, 2017, vol. 1, p. 23404.

    Article  Google Scholar 

  86. M. Widom, W.P. Huhn, S. Maiti, and W. Steurer: Metallurgical and Materials Transactions A, 2014, vol. 45, pp. 196–200.

    Article  CAS  Google Scholar 

  87. Y. Wang, M. Yan, Q. Zhu, W.Y. Wang, Y. Wu, X. Hui, R. Otis, S.-L. Shang, Z.-K. Liu, and L.-Q. Chen: Acta Materialia, 2018, vol. 143, pp. 88–101.

    CAS  Article  Google Scholar 

  88. S.I. Rao, C. Varvenne, C. Woodward, T.A. Parthasarathy, D. Miracle, O.N. Senkov, and W.A. Curtin: Acta Materialia, 2017, vol. 125, pp. 311–20.

    CAS  Article  Google Scholar 

  89. M.C. Gao, B. Zhang, S. Yang, and S.M. Guo: Metallurgical and Materials Transactions A, 2016, vol. 47, pp. 3333–45.

    Article  CAS  Google Scholar 

  90. F. Tian: Frontiers in Materials, 2017, vol. 4, p. 36.

    Article  Google Scholar 

  91. F.G. Coury, M. Kaufman, and A.J. Clarke: Acta Materialia, 2019, vol. 175, pp. 66–81.

    CAS  Article  Google Scholar 

  92. H.W. Yao, J.W. Qiao, J.A. Hawk, H.F. Zhou, M.W. Chen, and M.C. Gao: Journal of Alloys and Compounds, 2017, vol. 696, pp. 1139–50.

    CAS  Article  Google Scholar 

  93. F. Maresca and W.A. Curtin: Acta Materialia, 2020, vol. 182, pp. 235–49.

    CAS  Article  Google Scholar 

  94. O. Senkov, J. Scott, S. Senkova, D.B. Miracle, and C.F. Woodward: Journal of Alloys and Compounds, 2011, vol. 509, pp. 6043–8.

    CAS  Article  Google Scholar 

  95. L. Qi and D.C. Chrzan: Physical review letters, 2014, vol. 112, p. 115503.

    Article  CAS  Google Scholar 

  96. N. Yurchenko, N. Stepanov, and G. Salishchev: Materials Science and Technology, 2017, vol. 33, pp. 17–22.

    CAS  Article  Google Scholar 

  97. S. Guo: Materials Science and Technology, 2015, vol. 31, pp. 1223–30.

    CAS  Article  Google Scholar 

  98. M. Moorehead, K. Bertsch, M. Niezgoda, C. Parkin, M. Elbakhshwan, K. Sridharan, C. Zhang, D. Thoma, and A. Couet: Materials & Design, 2019, p. 108358.

  99. D.C. Hofmann, J. Kolodziejska, S. Roberts, R. Otis, R.P. Dillon, J.-O. Suh, Z.-K. Liu, and J.-P. Borgonia: Journal of Materials Research, 2014, vol. 29, pp. 1899–910.

    CAS  Article  Google Scholar 

  100. T. Borkar, B. Gwalani, D. Choudhuri, C. V Mikler, C.J. Yannetta, X. Chen, R.V. Ramanujan, M.J. Styles, M.A. Gibson, and R. Banerjee: Acta Materialia, 2016, vol. 116, pp. 63–76.

    CAS  Article  Google Scholar 

  101. P. Wilson, R. Field, and M. Kaufman: Intermetallics, 2016, vol. 75, pp. 15–24.

    CAS  Article  Google Scholar 

  102. A. Marshal, K.G. Pradeep, D. Music, S. Zaefferer, P.S. De, and J.M. Schneider: Journal of Alloys and Compounds, 2017, vol. 691, pp. 683–9.

    CAS  Article  Google Scholar 

  103. F.G. Coury, P. Wilson, K.D. Clarke, M.J. Kaufman, and A.J. Clarke: Acta Materialia, 2019, vol. 167, pp. 1–11.

    CAS  Article  Google Scholar 

  104. D.B. Miracle: JOM, 2017, vol. 69, pp. 2130–6.

    Article  Google Scholar 

  105. ASTM International: B655/B655M-10(2018) Standard Specification for Niobium-Hafnium Alloy Bar and Wire, ASTM International, West Conshohocken, PA, 2018.

    Google Scholar 

  106. G. Youping: in Unpublished research, Castheon Inc, Thousand Oaks, CA, 2019.

    Google Scholar 

  107. J. Jackson and R. Rice: PRELIMINARY MATERIAL PROPERTIES Handbook, vol. 1, AIR FORCE RESEARCH LABORATORY, WRIGHT-PATTERSON AIR FORCE BASE, 2000.

    Google Scholar 

  108. SAE International: SAE AMS 7857 - Columbium (Niobium) Alloy Bars, Rods, and Extrusions 10Hf - 1.0Ti, Recrystallization Annealed, SAE International, 2017.

  109. B.J. McTiernan and J. Moll: in Powder Metallurgy, P. Samal and J. Newkirk, eds., vol. 7, ASM International, 2015, pp. 682–702.

  110. J. Stephens: JOM J. Miner. Met. Mater. Soc.

  111. R.A. Perkins, K.T. Chiang, G.H. Meier, and R.A. Miller: in Report No. LMSC-F195926, vol. AD-A179245, Lockheed Missiles and Space Company, Inc., Palo Alto, 1987.

  112. R.A. Perkins, K.T. Chiang, and G.H. Meier: Scripta Metallurgica, 1988, vol. 22, pp. 419–24.

    CAS  Article  Google Scholar 

  113. J. Wadsworth, S.E. Dougherty, P.A. Kramer, and T.G. Nieh: Scripta Metallurgica et Materiala, 1992, vol. 27, pp. 71–6.

    CAS  Article  Google Scholar 

  114. N. Raghavan et al, Acta Materialia, 2017, vol. 140, pp. 375–387

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. R. Philips.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted on January 10, 2020.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Philips, N.R., Carl, M. & Cunningham, N.J. New Opportunities in Refractory Alloys. Metall Mater Trans A 51, 3299–3310 (2020). https://doi.org/10.1007/s11661-020-05803-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05803-3