Skip to main content
Log in

In Situ Investigation of the Bainitic Transformation from Deformed Austenite During Continuous Cooling in a Low Carbon Mn-Si-Cr-Mo Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effects of hot deformation on the bainitic transformation of a low carbon steel during continuous cooling were comprehensively studied through in situ high-energy synchrotron X-ray diffraction, dilatometry, and ex situ microstructural characterizations. The obtained results indicated that the prior deformation of austenite at 950 °C accelerates the bainite formation at the early stages. During the ongoing of the transformation, both the overall kinetics of bainite and carbon enrichment of austenite are lower in deformed austenite. The bainitic microstructure developed from deformed austenite is more refined and presents the same retained austenite content at room temperature with slightly lower carbon content when compared with the undeformed sample. Besides, a significant higher dilatation strain was measured during the bainitic transformation in the deformed sample, which can be explained by the crystallographic texture in hot deformed austenite. The evolution of the peak broadening of the {220}γ and {211}α reflections during bainitic transformation are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T. Sourmail: HTM J. Heat Treat. Mater., 2017, vol. 72, pp. 371–8.

    Google Scholar 

  2. H.K.D.H. Bhadeshia: Bainite in Steels: Theory and Practice, Third Edit., Maney Publishing, Wakefield, 2015.

    Google Scholar 

  3. D. Quidort: ISIJ Int., 2002, vol. 42, pp. 1010–7.

    CAS  Google Scholar 

  4. V.M. Khlestov, E. V. Konopleva, and H.J. Mcqueen: Can. Metall. Q., 2014, vol. 37, pp. 75–89.

    Google Scholar 

  5. R.W. Regier, A. Reguly, D.K. Matlock, J.. Choi, and J.G. Speer: Mater. Sci. Forum, 2014, vol. 783–786, pp. 85–90.

    Google Scholar 

  6. L. Guo, H.K.D.H. Bhadeshia, H. Roelofs, and M.I. Lembke: Mater. Sci. Technol., 2017, vol. 33, pp. 2147–56.

    Google Scholar 

  7. S. Reisinger, E. Kozeschnik, G. Ressel, J. Keckes, A. Stark, S. Marsoner, and R. Ebner: Mater. Des., 2018, vol. 155, pp. 475–84.

    CAS  Google Scholar 

  8. K. Yan, K.D. Liss, I.B. Timokhina, and E. V. Pereloma: Mater. Sci. Eng. A, 2016, vol. 662, pp. 185–97.

    CAS  Google Scholar 

  9. S.M.C. Van Bohemen: Scr. Mater., 2013, vol. 69, pp. 315–8.

    Google Scholar 

  10. D.J. Dyson and B. Holmes: J. Iron Steel Inst., 1970, vol. 208, pp. 469–474.

    CAS  Google Scholar 

  11. J. Epp: Mater. Res. Proc., 2016, vol. 2, pp. 283–8.

    Google Scholar 

  12. S.M.C. van Bohemen: Mater. Sci. Technol., 2011, vol. 28, pp. 487–95.

    Google Scholar 

  13. X. Liang and A.J. Deardo: Metall. Mater. Trans. A , 2014, vol. 45, pp. 5173–84.

    Google Scholar 

  14. P.H. Shipway and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 1995, vol. 11:1116-28.

    CAS  Google Scholar 

  15. H. Yi, L. Du, G. Wang, and X. Liu: J. Iron Steel Res. Int., 2006, vol. 13, pp. 36–9.

    CAS  Google Scholar 

  16. L. Du, H. Yi, H. Ding, X. Liu, and G. Wang: J. Iron Steel Res. Int., 2006, vol. 13, pp. 37–9.

    CAS  Google Scholar 

  17. M.K. Kang, D.M. Chen, S.P. Yang, and G.L. Hu: Metall. Trans. A, 1992, vol. 23, pp. 2946–7.

    Google Scholar 

  18. S.J. Lee, J.S. Park, and Y.K. Lee: Scr. Mater., 2008, vol. 59, pp. 87–90.

    CAS  Google Scholar 

  19. C. Gupta, G.K. Dey, J.K. Chakravartty, D. Srivastav, and S. Banerjee: Scr. Mater., 2005, vol. 53, pp. 559–64.

    CAS  Google Scholar 

  20. H.K.D.. Bhadeshia: Mater. Sci. Eng. A, 1999, vol. 273–275, pp. 58–66.

    Google Scholar 

  21. H. Hu, H.S. Zurob, G. Xu, D. Embury, and G.R. Purdy: Mater. Sci. Eng. A, 2015, vol. 626, pp. 34–40.

    CAS  Google Scholar 

  22. A. Eres-Castellanos, L. Morales-Rivas, A. Latz, F.G. Caballero, and C. Garcia-Mateo: Mater. Charact., 2018, vol. 145, pp. 371–80.

    CAS  Google Scholar 

  23. J. He, J. Du, W. Zhang, C. Zhang, Z.G. Yang, and H. Chen: Metall. Mater. Trans. A 2019, vol. 50, pp. 540–46.

    Google Scholar 

  24. K.D. Liss and K. Yan: Mater. Sci. Eng. A, 2010, vol. 528, pp. 11–27.

    Google Scholar 

  25. H. Zhao, B.P.P. Wynne, and E.J.J. Palmiere: Mater. Charact., 2017, vol. 123, pp. 128–36.

    CAS  Google Scholar 

  26. A. Matsuzaki and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 2010, vol. 15, pp. 518–22.

    Google Scholar 

  27. R.Y. Zhang and J.D. Boyd: Metall. Mater. Trans. A , 2010, vol. 41, pp. 1448–59.

    CAS  Google Scholar 

  28. C. Hofer, H. Leitner, F. Winkelhofer, H. Clemens, and S. Primig: Mater. Charact., 2015, vol. 102, pp. 85–91.

    CAS  Google Scholar 

  29. K. Zhu, H. Chen, J.P. Masse, O. Bouaziz, and G. Gachet: Acta Mater., 2013, vol. 61, pp. 6025–36.

    CAS  Google Scholar 

  30. E.A. Ariza, A.. Nishikawa, H. Goldenstein, and A.P. Tschiptschin: Mater. Sci. Eng. A, 2016, vol. 671, pp. 54–69.

    CAS  Google Scholar 

  31. H.K.D.H. Bhadeshia: Mater. Sci. Technol., 2015, vol. 31, pp. 758–63.

    CAS  Google Scholar 

  32. S.C. Wang and J.R. Yang: Mater. Sci. Eng. A, 1992, vol. 154, pp. 43–9.

    Google Scholar 

  33. E. Mazancová and K. Mazanec: J. Mater. Process. Technol., 1997, vol. 64, pp. 287–92.

    Google Scholar 

  34. P. Huyghe, M. Caruso, J.L. Collet, S. Dépinoy, and S. Godet: Mater. Sci. Eng. A, 2019, vol. 743, pp. 175–84.

    CAS  Google Scholar 

  35. M. Villa, K. Pantleon, and M.A.J. Somers: J. Alloys Compd., 2013, vol. 577, pp. 1–6.

    Google Scholar 

  36. R.K. Dutta, R.M. Huizenga, M. Amirthalingam, M.J.M. Hermans, H. Gao, A. King, and I.M. Richardson: In: T. Kannengiesser, S.S. Babu, Y. Komizo, and A.J. Ramirez (eds) In-situ Studies with Photons, Neutrons and Electrons Scattering II, Springer, Cham, 2014, pp. 51–70.

    Google Scholar 

  37. R. Rementeria, J.A. Jimenez, S.Y.P. Allain, G. Geandier, J.D. Poplawsky, W. Guo, E. Urones-Garrote, C. Garcia-Mateo, and F.G. Caballero: Acta Mater., 2017, vol. 133, pp. 333–45.

    CAS  Google Scholar 

  38. B. Avishan, S. Yazdani, F.G. Caballero, T.S. Wang, and C. Garcia-Mateo: Mater. Sci. Technol., 2015, vol. 31, pp. 1508–20.

    CAS  Google Scholar 

  39. T.K. Liu, G.L. Wu, C.K. Liu, Z.H. Nie, T. Ungár, Y. Ren, and Y.D. Wang: Mater. Sci. Eng. A, 2013, vol. 568, pp. 83–7.

    CAS  Google Scholar 

  40. R.K. Dutta, R.M. Huizenga, M. Amirthalingam, M.J.M. Hermans, A. King, and I.M. Richardson: Metall. Mater. Trans. A , 2013, vol. 44, pp. 4011–14.

    Google Scholar 

  41. C. Garcia-Mateo, F.G. Caballero, C. Capdevila, and C.G. de Andres: Scr. Mater., 2009, vol. 61, pp. 855–8.

    CAS  Google Scholar 

  42. C. Goulas, A. Kumar, M.G. Mecozzi, F.M. Castro-Cerda, M. Herbig, R.H. Petrov, and J. Sietsma: Mater. Charact., 2019, vol. 152, pp. 67–75.

    CAS  Google Scholar 

  43. F. Caballero, M. Miller, S. Babu, and C. Garciamateo: Acta Mater., 2007, vol. 55, pp. 381–90.

    CAS  Google Scholar 

  44. B.L. Bramfitt and J.G. Speer: Metall. Trans. A, 1990, vol. 21, pp. 817–29.

    Google Scholar 

  45. S. Reisinger, G. Ressel, S. Eck, and S. Marsoner: Micron, 2017, vol. 99, pp. 67–73.

    CAS  Google Scholar 

  46. H. Kawata, K. Sakamoto, T. Moritani, S. Morito, T. Furuhara, and T. Maki: Mater. Sci. Eng. A, 2006, vol. 438–440, pp. 140–4.

    Google Scholar 

  47. C. Hofer, F. Winkelhofer, H. Clemens, and S. Primig: Mater. Sci. Eng. A, 2016, vol. 664, pp. 236–46.

    CAS  Google Scholar 

  48. H. Zhao, B.P. Wynne, and E.J. Palmiere: Mater. Charact., 2017, vol. 123, pp. 339–48.

    CAS  Google Scholar 

  49. J.Y. Kang, S.J. Park, D.W. Suh, and H.N. Han: Mater. Charact., 2013, vol. 84, pp. 205–15.

    CAS  Google Scholar 

  50. S. Zajac, V. Schwinnand, and K.H. Tacke: Mater. Sci. Forum, 2005, vol. 500–501, pp. 387–94.

    Google Scholar 

  51. G. Miyamoto, N. Iwata, N. Takayama, and T. Furuhara: J. Alloys Compd., 2013, vol. 577, pp. S528–32.

    CAS  Google Scholar 

  52. B. Verlinden, P. Bocher, E. Girault, and E. Aernoudt: Scr. Mater., 2001, vol. 45, pp. 909–16.

    CAS  Google Scholar 

  53. A. Mangal, P. Biswas, S. Lenka, V. Singh, S.B. Singh, and S. Kundu: Mater. Sci. Technol. (United Kingdom), 2014, vol. 30, pp. 1116–24.

    CAS  Google Scholar 

Download references

Acknowledgments

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001 and the Deutsche Forschungsgemeinschaft_DFG (ZO 140/21-1). The authors gratefully acknowledge DESY for provision of beamtime as well as Norbert Schell and Andreas Stark from Helmholtz-Center-Geesthacht at beamline P07 (PETRA III-DESY) for support during the synchrotron experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Lemos Bevilaqua.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 28, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lemos Bevilaqua, W., Epp, J., Meyer, H. et al. In Situ Investigation of the Bainitic Transformation from Deformed Austenite During Continuous Cooling in a Low Carbon Mn-Si-Cr-Mo Steel. Metall Mater Trans A 51, 3627–3637 (2020). https://doi.org/10.1007/s11661-020-05800-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05800-6

Navigation