Skip to main content

Advertisement

Log in

Influence of Microstructure on the Mechanical Properties of a Pearlitic Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of austenite grain size on microstructure and mechanical properties was studied for a pearlitic steel. The best combination of ultimate tensile strength (UTS) and percent reduction in area (pct RA) was obtained when the material was austenitized at 950 °C, and the corresponding austenite grain size, before the start of cooling, was approximately 71 μm. Pearlite lamella spacing and colony size were minimum for these samples. Both UTS and pct RA were found to maintain a kind of power law-type relationship with microstructural aspects such as pearlite lamella spacing and colony size. The experimental data suggest that further enhancement of the strength of prestressed concrete (PC) wire rod (beyond 1200 MPa) would require a fine pearlitic microstructure in which pearlite lamella spacing would be below 0.05 μm and average colony size would be below 4 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T. Tarui, S. Nishida, A. Yoshie, H. Ohba, Y. Asano, I. Ochiai, and T. Takahashi: Nippon Steel Techn. Rep., 1999, vol. 80, pp. 44–49.

    Google Scholar 

  2. H.K.D.H. Bhadesia and R.W.K. Honeycomb: Steels—Microstructure and Properties, Elsevier, Amsterdam, 2006.

    Google Scholar 

  3. V.I. Izotov, M.E. Getmanova, A.A. Burzhanov, E.Y. Kireeva, and G.A. Filippov: Phys. Met. Metallogr., 2009, vol. 108, pp. 606–15.

    Article  Google Scholar 

  4. D.A. Porter, K.E. Easterling, and G.D.W. Smith: Acta Metall., 1978, vol. 26, pp. 1405–22.

    Article  CAS  Google Scholar 

  5. 5.V. I. Izotov, V. A. Pozdnyakov, and E. V. Luk’yanenko: Phys. Met. Metallogr., 2007, vol. 103, pp. 519–-530.

    Article  Google Scholar 

  6. A.V. Makarov, R.A. Savrai, and V.M. Schastlivtsev: Phys. Met. Metallogr., 2007, vol. 104, pp. 522–34.

    Article  Google Scholar 

  7. J. Toribio, B. González, J. Matos, and F. Ayaso: Metals, 2016, https://doi.org/10.3390/met6120318.

    Article  Google Scholar 

  8. J.M. Hyzak and I.M. Bernstein: Metall. Trans. A, 1976, vol. 7A, pp. 1217–24.

    Article  CAS  Google Scholar 

  9. C. M. Bae, W. J. Nam, and C. S. Lee: Scripta Mater., 1999, vol. 41, pp. 605–10.

    Article  CAS  Google Scholar 

  10. A.R. Marder and B.L. Bramfit: Metall. Trans. A, 1975, vol. 6A, pp. 2009–14.

    Article  CAS  Google Scholar 

  11. A.R. Marder and B.L. Bramfit: Metall. Trans. A, 1976, vol. 7A, pp. 365–72.

    Article  CAS  Google Scholar 

  12. C.M. Bae, W.J. Nam, and C.S. Lee: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 2665–69.

    Article  CAS  Google Scholar 

  13. F.P.L. Kavishe and T.J. Baker: Mater. Sci. Technol., 1986, vol. 2, pp. 816–22.

    Article  CAS  Google Scholar 

  14. J.J. Lewandowski and A.W. Thompson: Metall. Trans. A, 1986, vol. 17A, pp. 1769–86.

    Article  CAS  Google Scholar 

  15. J.J. Lewandowski and A.W. Thompson: Metall. Trans. A, 1986, vol. 17A, pp. 461–72.

    Article  CAS  Google Scholar 

  16. F.B. Pickering and G. Garbarz: Scripta Metall., 1987, vol. 21, pp. 249–53.

    Article  CAS  Google Scholar 

  17. G. Garbarz and F.B. Pickering: Mater. Sci. Technol., 1988, vol. 4, pp. 328–34.

    Article  CAS  Google Scholar 

  18. H. Yahyaoui, H. Sidhom, C. Braham, and A. Baczmanski: Mater. Des., 2014, vol. 55, pp. 888–97.

    Article  CAS  Google Scholar 

  19. A. Fernández-Vicente, M. Carśı, F. Peñalba, E. Taleff, and O.A. Ruano: Mater. Sci. Eng. A , 2002, vol. 335, pp. 175–85.

    Article  Google Scholar 

  20. M.G.M.F. Gomes, L.H. Almeida, L.C.F.C. Gomes, and I.L. May: Mater. Charact., 1997, vol. 39, pp. 1–14.

    Article  Google Scholar 

  21. O.P. Modi, N. Deshmukh, D.P. Mondal, A.K. Jha, A.H. Yegneswaran, and H.K. Khaira: Mater. Charact., 2001, vol. 46, pp. 347–52.

    Article  CAS  Google Scholar 

  22. B. Bhattacharya, T. Bhattacharyya, and A. Haldar: Ironmak. Steelmak., 2018, vol. 45, pp. 99–104.

    Article  CAS  Google Scholar 

  23. F. Zhang, Y. Zhao, Y. Tan, X. Ji, and S. Xiang: Metals, 2019, https://doi.org/10.3390/met9111133.

    Article  Google Scholar 

  24. K. Han, D.V. Edmonds, and G.D.W. Smith: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1–12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Bhattacharya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 11, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharya, B., Bhattacharyya, T. & Haldar, A. Influence of Microstructure on the Mechanical Properties of a Pearlitic Steel. Metall Mater Trans A 51, 3614–3626 (2020). https://doi.org/10.1007/s11661-020-05793-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05793-2

Navigation