Skip to main content
Log in

Improving High-Temperature Strength of Ti-6Al-2.5Mo-1.5Cr-0.5Fe-0.3Si Titanium Alloy by Cryogenic Pre-treatment and Laser Peening

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The plastic deformation behavior and microscopic strengthening mechanism of Ti-6Al-2.5Mo-1.5Cr-0.5Fe-0.3Si (TC6) titanium alloy treated by the combination of cryogenic pre-treatment (CT) and laser peening (LP) during a high-temperature tensile testing were investigated. The residual stress and full-width-half-maximum (FWHM) values were determined by X-ray diffraction. In addition, micro-structural evolution in the subsurface was characterized by optical microscopy (OM) and transmission electron microscopy (TEM). It was found that the yield strength of CT-LPed samples was 14.09, 29.46, and 23.37 pct higher than that of the LPed samples at 400 °C, 500 °C, and 600 °C, respectively, due to less thermal relaxation of compressive residual stress (CRS) and more refined grains. Furthermore, widely distributed dislocation walls and tangled dislocations in CT-LPed samples verified the strengthening effects induced by the combination of CT and LP. A novel “paw-shaped” structure which was adhered stably on the grain boundaries was a direct evidence of the strengthening effects. The unmovable dislocation jogs generated by multi-direction dislocation movement and the cross-slip structure were believed to be two important factors to improve the high-temperature strength of TC6 titanium alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. E. Ghasemi, A. Zarei-Hanzaki, S. Moemeni, M. Ghambari, and M. Rezaee: Mate. Sci. Eng. A, 2016, vol. 654, pp. 264-70.

    Article  CAS  Google Scholar 

  2. A. Umapathi and S. Swaroop: Opt. Laser Tech., 2018, vol.100, pp. 309-16.

    Article  CAS  Google Scholar 

  3. I. Balasundar, K.R. Ravi, and T. Raghu: Mate. Sci. Eng. A, 2017, vol. 684, pp.135-45.

    Article  CAS  Google Scholar 

  4. A. Schuh, C. Zeller, U. Holzwarth, W. Kachler, G. Wilcke, G. Zeiler, B. Eigenmann, and J. Bigoney: J. Biomed. Mater. Res. B, 2007, vol. 81, pp. 330-35.

    Article  CAS  Google Scholar 

  5. D.Y. Ju, X.M. Fu, S. Na, B. Han, and X.H. Deng: Adv. Mater. Res., 2011, vol. 317-319, pp. 429-35.

    Article  CAS  Google Scholar 

  6. A.L. Wen, S.W. Wang, R.M. Ren, and X.X. Yan: Appl. Mech. Mater., 2011, vol. 55-57, pp. 1138-41.

    Article  CAS  Google Scholar 

  7. A. Umapathi and S. Swaroop: Mater. Charact., 2017, vol. 131,pp. 431-39.

    Article  CAS  Google Scholar 

  8. D. Cellare and M.Retraint: Mate. Sci. Eng. A, 2012, vol. 532, pp. 362-72.

    Article  CAS  Google Scholar 

  9. J. Sheng, J. Zhou, and S. Huang: Int. J. Adv. Manuf. Tech., 2015, vol. 76, pp. 1285-95.

    Article  Google Scholar 

  10. B. Ahmad and M.E. Fitzpatrick: Metall. Mater. Trans. A, 2017, vol. 48, pp. 759-70.

    Article  CAS  Google Scholar 

  11. J. Z.Lu, W. Q.Zhang, and X.Jing: J. Laser Appl., 2017,vol. 29, pp. 012007.

    Article  CAS  Google Scholar 

  12. E. Maawad, Y. Sano, L. Wagner, H. G. Brokmeier, and Ch. Genzel: Mate. Sci. Eng. A, 2012, vol. 536, pp.82-91.

    Article  CAS  Google Scholar 

  13. K. SowmyaJoshi, G. Rajyalakshmi, G. Ranjith, S. Kalainathan, and S. Prabhakaran: Mater Today: Proceedings, 2018, vol.5, pp. 12174-86.

    Google Scholar 

  14. J. Sheng, S. Huang, J. Zhou, J. Lu, S. Xu, and H. Zhang: Opt. Laser Technol., 2016, vol. 77, pp.169-76.

    Article  CAS  Google Scholar 

  15. R. Bikdeloo, G.H.Farrahi, A.Mehmanparast, and S.M.Mahdavi: Theor. Appl. Fract. Mec., 2020, vol.105,pp. 102429.

    Article  CAS  Google Scholar 

  16. E. Agyenim-Boateng, S. Huang, J. Sheng, G. Yuan, Z. Wang, J. Zhou, and A. Feng: Surf. Coat. Technol., 2017, vol.328, pp.44-53.

    Article  CAS  Google Scholar 

  17. S. Huang, G. Yuan, J. Sheng, W. Tan, E. Agyenim-Boateng, J. Zhou, and H. Guo: Int. J. Hydrogen Energ., 2018, vol. 43, pp.11263-74.

    Article  CAS  Google Scholar 

  18. R.K Nalla, I. Altenberger, U. Noster, G.Y. Liu, B. Scholtes, and R.O. Ritchie: Mater. Sci. Eng. A, 2003, vol. 355, pp. 216-30.

    Article  CAS  Google Scholar 

  19. J. Li, J.Z. Zhou, A.X. Feng, S. Huang, X.K. Meng, Y.H. Sun, and Y.J. Sun: Mate. Sci. Eng. A, 2018, vol. 734, pp.291-98.

    Article  CAS  Google Scholar 

  20. S. Zhirafar, A. Rezaeian, and M. Pugh: J. Mater. Processing Tech., 2007,vol. 186, pp.298-03.

    Article  CAS  Google Scholar 

  21. P.J. Singh, B. Guha, and D.R.G. Achar: Eng. Fail. Anal., 2003, vol. 10, pp.1-12.

    Article  Google Scholar 

  22. M. Araghchi, H. Mansouri, R. Vafaei, and Y. Guo: Mate. Sci. Eng. A, 2017, vol. 689, pp. 48-52.

    Article  CAS  Google Scholar 

  23. J.Z. Zhou, S.Q. Xu, S. Huang, X.K. Meng, J. Sheng, H.F. Zhang, J. Li, Y.H. Sun, and A.B. Emmanuel: Metals, 2016, vol. 279, pp. 1-10.

    Article  CAS  Google Scholar 

  24. C. Ye, S. Suslov, D. Lin, Y.L. Liao, X.L. Fei, and G.J. Cheng: J. Appl. Phys., 2011, vol. 110, pp. 0835041-8.

    Google Scholar 

  25. J.Z. Zhou, J. Li, S.Q. Xu, S. Huang, X.K. Meng, J. Sheng, and H.F. Zhang: Surf. Coat. Tech., 2018, vol. 345, pp. 31-39.

    Article  CAS  Google Scholar 

  26. J.Z. Zhou, J. Li, S. Huang, J. Sheng, X.K. Meng, Q. Sun, Y.H. Sun, G.F. Xu, Y.J. Sun, and H.T. Li: Mate. Sci. Eng. A, 2018, vol.718, pp. 207-15.

    Article  CAS  Google Scholar 

  27. G.R. Li, J.F. Cheng, H.M. Wang, and C.Q. Li: J. Alloy Compd., 2017, vol. 695, pp.1930-45.

    Article  CAS  Google Scholar 

  28. I. Altenberger, R.K. Nalla, Y.J. Sano, L. Wagner, and R.O. Ritchie: Int. J. Fatigue, 2012, vol. 44, pp.292-02.

    Article  CAS  Google Scholar 

  29. H. Armin and S. Ramin: Int. J. Advan. Manuf. Tech., 2019, vol.100, pp. 877-93.

    Article  Google Scholar 

  30. M. Kattoura, A. Telang, S.R. Mannava, D. Qian, and V.K. Vasudevan: Mate. Sci. Eng. A, 2018, vol. 711, pp. 364-77.

    Article  CAS  Google Scholar 

  31. J.Z. Zhou, Y.H. Han, S. Huang, X.K. Meng, J. Sheng, W.L. Zhu, and S.O. Xu: Rare Metal Mater. Eng., 2016, vol. 45, pp. 1509-14.

    Article  Google Scholar 

  32. S.A. Catledge and Y.K. Vohra: J. Appl. Phys., 1999, vol.86, pp. 698-700.

    Article  CAS  Google Scholar 

  33. X.L. Wei and X. Ling: Appl. Surf. Sci., 2014, vol. 301, pp.557-63.

    Article  CAS  Google Scholar 

  34. J. Yang, H. Jiang, Z.H. Yao, and J.X. Dong: Mater. Lett., 2018, vol. 221, pp. 89-92.

    Article  CAS  Google Scholar 

  35. K.H. Bae, T.H. Kim, S.R. Lee, H.J. Kim, M.W. Lee, and T.S. Jang: J. Alloy Compd., 2013, vol.49, pp. 3251-54.

    CAS  Google Scholar 

  36. C.L. Hale, W.S. Rollings, and M.L. Weaver: Mate. Sci. Eng. A, 2001, vol. 300, pp. 153-64.

    Article  Google Scholar 

  37. M.D.C. Sobral, P.R. Mei, and H.J. Kestenbach: Mate. Sci. Eng. A, 2004, vol. 367, pp. 317-21.

    Article  CAS  Google Scholar 

  38. D. Hull, J.D. Bacon, and D. Bacon D: Introduction to Dislocations, 2011, p. 257.

  39. A. Pichler, M. Weller, and E. Arzt: J. Alloy Compd., 1994, vol. 211-212, pp. 414-18.

    Article  Google Scholar 

  40. B.J.F. Bruet, J. Song, M.C. Boyce, and C. Ortiz: Nat. Mater., 2008, vol. 7, pp. 748-56.

    Article  CAS  Google Scholar 

  41. C. Ye, A. Telang, A.S. Gill, S. Suslov, Y. Idell, K. Zweiacker, J.M.K. Wiezorek, Z. Zhou, D.Qian, S.R. Mannava, and V.K. Vasudevan: Mate. Sci. Eng. A, 2014, vol. 613, pp. 274-88.

    Article  CAS  Google Scholar 

  42. C. Ye, S. Suslov, B.J. Kim, E.A. Stach, and G.J. Cheng: Acta Mater., 2011, vol.59, pp. 1014-25.

    Article  CAS  Google Scholar 

  43. A.I. Dekhtyar, B.N. Mordyuk, D.G. Savvakin, V.I. Bondarchuk, I.V. Moiseeva, and N.I. Khripta: Mate. Sci. Eng. A,2015, vol. 641, pp. 348-59.

    Article  CAS  Google Scholar 

  44. M. Kattoura, S.R. Mannava, D. Qian, and V.K. Vasudevan: Int. J. Fatigue, 2017, vol. 102, pp. 21-134.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from the National Natural Science Foundation of China (Nos. 51775252, 51405204), China Postdoctoral Science Foundation Funded Project (2018M630526), Six Talent Peaks Project in Jiangsu Province (GDZB-050), Opening Project of Jiangsu Key Laboratory of Large Engineering Equipment Detection and Control (JSKLEDC201503), and Youth Key Teacher Training Project of Jiangsu University (2016016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 15, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, J., Huang, S., Liu, M. et al. Improving High-Temperature Strength of Ti-6Al-2.5Mo-1.5Cr-0.5Fe-0.3Si Titanium Alloy by Cryogenic Pre-treatment and Laser Peening. Metall Mater Trans A 51, 3601–3613 (2020). https://doi.org/10.1007/s11661-020-05789-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05789-y

Navigation