Skip to main content
Log in

Quench Temperature-Dependent Phase Transformations During Nonisothermal Partitioning

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

An attempt has been made to estimate the amount and composition of different phases formed during the simulated quenching and nonisothermal partitioning (Q&P) process in a dilatometer by matching the experimental dilation data with empirically determined dilation curve. The result highlights the carbon enrichment of austenite, as well as its partial transformation to secondary martensite and/or bainite, during the partitioning step. Also, an increase in quench temperature (QT) led to enhanced bainite or secondary martensite formation, as a result of reduced carbon enrichment of remaining austenite. Further Q&P experiments on bulk samples were carried out to understand the dependence of carbon diffusion and subsequent microstructure evolution with QT. Although the change in experimentally obtained retained austenite (RA) content with QT corroborates with the existing model predictions, the maximum amount of RA was observed at QT lower than predicted. The half-thickness of RA films increased with increasing QT, which substantiates the theoretical prediction of the diffusion distance of carbon atoms in austenite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. 1. X. Tan, Y. Xu, X. Yang, Z. Liu, and D. Wu: Mater. Sci. Eng. A, 2014, vol. 594, pp. 149-160.

    Article  CAS  Google Scholar 

  2. G.A. Thomas: Simulation of hot-rolled advanced high strength sheet steel production using a Gleeble system, MS Thesis, Colorado School of Mines, Golden, Co, 2009.

  3. 3. G.A. Thomas, J.G. Speer, and D.K. Matlock: Metall. Mater. Trans. A, 2011, vol. 42, pp. 3652–3659.

    Article  Google Scholar 

  4. 4. X.D. Tan, Y.B. Xu, X.L. Yang, Z.P. Hu, F. Peng, X.W. Ju, and D. Wu, Mater. Charact., 2015, vol. 104, pp. 23-30.

    Article  CAS  Google Scholar 

  5. 5. Y. Li, X.Li, G. Yuan, J. Kang, D. Chen, and G. Wang: Mater. Charact., 2016, vol. 121, pp. 157-165.

    Article  CAS  Google Scholar 

  6. 6. Y. Li, D. Chen, X.Li, J. Kang, G.Yuan, R.D.K. Misra, and G.Wang: Steel Res. Int., 2018, vol. 89, pp. 1-11.

    Google Scholar 

  7. 7. G.K. Bansal, V. Rajinikanth, C. Ghosh, V.C. Srivastava, S. Kundu, and S.G. Chowdhury: Metall. Mater. Trans. A, 2018, vol. 49, pp. 3501-3514.

    Article  Google Scholar 

  8. 8. Y.J. Li, J. Kang, W.N. Zhang, D. Liu, X.H. Wang, G. Yuan, R.D.K. Misra, and G.D. Wang: Mater. Sci. Eng. A, 2018, vol. 710, pp. 181-191.

    Article  CAS  Google Scholar 

  9. K. Jian, W. Chao, L. Yunjie, Y. Guo, W. Guodong: J. Wuhan Univ. Technol., 2016, vol. 31, pp. 178-185.

    Article  Google Scholar 

  10. 10. Y. J. Li, D. Chen, D. Liu, J. Kang, G. Yuan, Q. J. Mao, R.D.K. Misra, and G. D. Wang: Mater. Sci. Eng. A, 2018, vol. 732, pp. 298-310.

    Article  CAS  Google Scholar 

  11. 11. D.V. Edmonds and R.C. Cochrane: Metall. Trans. A, 1990, vol. 21, pp. 1527-1540.

    Article  Google Scholar 

  12. 12. R. Ranjan and S.B. Singh: Metall. Mater. Trans. A, 2018, vol. 49, pp. 88-93.

    Article  Google Scholar 

  13. 13. L.C.D. Fielding: Mater. Sci. Technol., 2013, vol. 29, pp. 383-399.

    Article  CAS  Google Scholar 

  14. S.B. Singh: in Phase Transformations in Steels: Fundamentals and Diffusion-Controlled Transformations, E. Pereloma, D.V. Edmonds, eds., Woodhead Publishing Limited, Cambridge, 2012.

  15. 15. H.K.D.H. Bhadeshia and R.W.K. Honeycombe: Steels: Microstructure and Properties, Butterworth-Heinemann, Elsevier, Oxford, 2006.

    Google Scholar 

  16. 16. F.G. Caballero, M.K. Miller, C. Garcia-Mateo, and J. Cornide: J. Alloys Compd., 2013, vol. 577, pp. S626-S630.

    Article  CAS  Google Scholar 

  17. 17. F.G. Caballero, M.K. Miller, C. Garcia-Mateo, J. Cornide, and M.J. Santofimia: Scripta Mater., 2012, vol. 67, pp. 846-849.

    Article  Google Scholar 

  18. 18. S.M.C. van Bohemen, M.J. Santofimia, and J. Sietsma: Scr. Mater., 2008, vol. 58, pp. 488-491.

    Article  Google Scholar 

  19. 19. S. Samanta, P. Biswas, S. Giri, S.B. Singh, and S. Kundu: Acta Mater., 2016, vol. 105, pp. 390-403.

    Article  CAS  Google Scholar 

  20. 20. S. Samanta, S. Das, D. Chakrabarti, I. Samajdar, S.B. Singh, and A. Haldar: Metall. Mater. Trans. A, 2013, vol. 44, pp. 5653-5664.

    Article  Google Scholar 

  21. 21. M.J. Santofimia, L. Zhao, R. Petrov, C. Kwakernaak, W.G. Sloof, and J. Sietsma: Acta Mater., 2011, vol. 59, pp. 6059-6068.

    Article  CAS  Google Scholar 

  22. 22. F. HajyAkbary, J. Sietsma, G. Miyamoto, T. Furuhara, and M.J. Santofimia: Acta Mater., 2016, vol. 104, pp. 72-83.

    Article  CAS  Google Scholar 

  23. 23. J. Dearden and H. O’Neill: Trans. Inst. Weld, 1940, vol. 3, pp. 203-214.

    Google Scholar 

  24. 24. K.W. Andrews: J. Iron Steel Inst., 1965, vol. 203, pp. 721-727.

    CAS  Google Scholar 

  25. 25. J.G. Speer, A.M. Streicher, D.K. Matlock, F. Rizzo, and G. Krauss: Austenite formation and decomposition, Warrendale, TMS/ISS, 2003, pp. 505-522.

    Google Scholar 

  26. 26. K.O. Findley, J. Hidalgo, R.M. Huizenga, and M.J. Santofimia: Mater. Des., 2017, vol. 117, pp. 248-256.

    Article  CAS  Google Scholar 

  27. Y-J Yang, J-X Fu, R-J Zhao, and Y-X Wu: Dilatometric Analysis of Phase Fractions during Austenite Decomposition in Pipeline Steel, Proceedings of the 3rd International Conference on Material, Mechanical and Manufacturing Engineering (IC3ME), 2015, pp. 1974–78.

  28. 28. H.K.D.H. Bhadeshia, S.A. David, J.M. Vitek, and R. W. Reed: Mater. Sci. Technol., 1991, vol. 7, pp. 686-698.

    Article  CAS  Google Scholar 

  29. 29. D. J. Dyson and B. Holmes: J. Iron Steel Inst., 1970, vol. 208, pp. 469-474.

    CAS  Google Scholar 

  30. 30. R. Wei, M. Enomoto, R. Hadian, H.S. Zurob, and G.R. Purdy: Acta Mater., 2013, vol. 61, pp. 697-707.

    Article  CAS  Google Scholar 

  31. 31. Y. Lu, H. Yu, and R.D. Sisson Jr, Mater. Sci. Eng. A, 2017, vol. 700, pp. 592-597.

    Article  CAS  Google Scholar 

  32. 32. J. Speer, D.K. Matlock, B.C. De Cooman, and J.G. Schroth: Acta Mater., 2003, vol. 51, pp. 2611-2622.

    Article  CAS  Google Scholar 

  33. 33. W. Stevens and A.J. Haynes: J. Iron Steel Inst., 1956, vol. 183, pp. 349-359.

    Google Scholar 

  34. 34. H-S Yang and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 2007, vol. 23, pp. 556-560.

    Article  CAS  Google Scholar 

  35. 35. D. Koistinen and R. Marburger: Acta Metall., 1959, vol. 7, pp. 59-60.

    Article  Google Scholar 

  36. 36. G.K. Bansal, M. Pradeep, C. Ghosh, V. Rajinikanth, V.C. Srivastava, A.N. Bhagat, and S. Kundu: Metall. Mater. Trans. A Comm., 2019, vol. 50, pp. 547-55.

    Article  Google Scholar 

  37. 37. S. Nagakura: J. Phys. Soc. Jpn., 1959, vol. 14, pp. 186-195.

    Article  CAS  Google Scholar 

  38. 38. S. Naseema, G.K. Bansal, M. Ghosh, G. Das, V.C. Srivatsava, K.S. Rao, and K.G. Krishna, Adv. Mater. Res., 2018, vol. 1148, pp. 75-81.

    Article  Google Scholar 

  39. 39. G.K. Bansal, V.C. Srivastava, and S. Ghosh Chowdhury, Mater. Sci. Eng. A, 2019, vol. 767, art. no. 138419.

    Article  Google Scholar 

  40. 40. M. Kizilyalli, J. Corish, and R. Metsellar: Pure Appl. Chem., 1999, vol. 71, pp. 1307-1325.

    CAS  Google Scholar 

  41. 41. M.J. Santofimia, L. Zhaoa, and J. Sietsma: Scr. Mater., 2008, vol. 59, pp. 159-162.

    Article  CAS  Google Scholar 

  42. 42. M.J. Santofimia, J.G. Speer, A.J. Clarke, L. Zhao, and J. Sietsma: Acta Mater., 2009, vol. 57, pp. 4548–4557.

    Article  CAS  Google Scholar 

  43. D. De Knijf, M. J. Santofimia, H. Shi, V. Bliznuk, C. Föjer, R. Petrova, and W. Xu: Acta Mater., 2015, vol. 90, pp. 161-168.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Tata Steel Ltd., Jamshedpur. The authors wish to thank the Director, CSIR-NML and Tata Steel management for their kind encouragement and permission to publish this work. The authors also acknowledge the help rendered by Prof. Javad Mola, Hochschule Osanabrück, Germany, in carrying out the dilatometry. The authors are also thankful to Dr. Saurav Kundu, TATA Steel for his suggestions during technical discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ghosh Chowdhury.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 30, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bansal, G.K., Junior, L.P., Ghosh, C. et al. Quench Temperature-Dependent Phase Transformations During Nonisothermal Partitioning. Metall Mater Trans A 51, 3410–3424 (2020). https://doi.org/10.1007/s11661-020-05779-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05779-0

Navigation