Skip to main content
Log in

Effective Method to Enhance the Glass-Forming Ability of Vitreloy 105 Containing High Oxygen Concentrations

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Oxygen sensitiveness of Zr-based bulk metallic glasses (BMGs) is well known and has a huge detrimental effect decreasing the alloy glass-forming ability (GFA) as well as mechanical properties. Addition of rare earth elements has been widely used in attempt to overcome this drawback. Here, we present an effective method to enhance the GFA of Vitreloy 105 along five different oxygen concentrations in the range from 600 to 3000 wppm by stoichiometric Y microalloying to form Y2O3 in samples with 5 and 6 mm diameter rods. Oxygen measurements, light optical microscopy (LOM), scanning electron microscopy (SEM) in backscattered electron (BSE) mode along with energy dispersive spectroscopy (EDS), and Rietveld refinement in synchrotron X-ray diffraction patterns were used to quantitatively demonstrate the effectiveness of the stoichiometric Y microalloying methodology to enhance the GFA in this alloy. This result opens the possibility of using less expensive low-purity raw materials in the production of BMGs with good sizes (5 and 6 mm rods) without the need of extreme cooling rates and clean conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Z.P. Lu, C.T. Liu and W.D. Porter: Appl. Phys. Lett., 2003, vol. 83, pp. 2581-2583. https://doi.org/10.1063/1.1614833.

    Article  CAS  Google Scholar 

  2. F.F. Wu, K.C. Chan, S.-S. Jiang, S.-H. Chen and G. Wang: Sci. Rep., 2014, vol. 4, pp. 5302. https://doi.org/10.1038/srep05302.

    Article  CAS  Google Scholar 

  3. A. Inoue, B. Shen and A. Takeuchi: Mater. Trans., 2006, vol. 47, pp. 1275-1285. https://doi.org/10.2320/matertrans.47.1275.

    Article  CAS  Google Scholar 

  4. S.F. Guo, K.C. Chan, X.Q. Jiang, H.J. Zhang, D.F. Zhang, J.F. Wang, B. Jiang and F.S. Pan: J. Non. Cryst. Solids, 2013, vol. 379, pp. 107-111. https://doi.org/10.1016/j.jnoncrysol.2013.07.036.

    Article  CAS  Google Scholar 

  5. Y. Liu, S. Niu, F. Li, Y. Zhu and Y. He: Powder Technol., 2011, vol. 213, pp. 36-40. https://doi.org/10.1016/j.powtec.2011.06.026.

    Article  CAS  Google Scholar 

  6. Y. Fukushima, K. Katsumata, Z. Shengli, X. Guoqiang, M. Niinomi, K. Okada and N. Matsushita: Mater. Trans., 2013, vol. 54, pp. 1343-1346. https://doi.org/10.2320/matertrans.mf201312.

    Article  CAS  Google Scholar 

  7. Z. Liu, Y. Yang, R. Li, L. Huang and T. Zhang: Chinese Sci. Bull., 2012, vol. 57, pp. 3931-3936. https://doi.org/10.1007/s11434-012-5293-x.

    Article  CAS  Google Scholar 

  8. Y. Yokoyama, K. Fukaura and A. Inoue: Mater. Sci. Eng. A., 2004, vol. 375-377, pp. 427-431. https://doi.org/10.1016/j.msea.2003.10.268.

    Article  CAS  Google Scholar 

  9. Q. Hu, M.W. Fu and X.R. Zeng: J. Alloys Compd., 2014, vol. 602, pp. 326-330. https://doi.org/10.1016/j.jallcom.2014.02.160.

    Article  CAS  Google Scholar 

  10. J.-L. Cheng, G. Chen, C.-T. Liu and Y. Li: Sci. Rep., 2013, v. 3, pp. 2097. https://doi.org/10.1038/srep02097

    Article  Google Scholar 

  11. C.T.T. Liu, M.F.F. Chisholm and M.K.K. Miller: Intermetallics, 2002, vol. 10,pp. 1105-1112. https://doi.org/10.1016/s0966-9795(02)00131-0.

    Article  CAS  Google Scholar 

  12. M. Yan, J. Zou and J. Shen: Acta Mater., 2006, vol. 54, pp. 3627-3635. https://doi.org/10.1016/j.actamat.2006.03.052.

    Article  CAS  Google Scholar 

  13. J. Zhu, C. Wang, J. Han, S. Yang, G. Xie, H. Jiang, Y. Chen and X. Liu: Intermetallics, 2018, vol. 92, pp. 55-61. https://doi.org/10.1016/j.intermet.2017.08.018.

    Article  CAS  Google Scholar 

  14. M. Yan, J. Shen, T. Zhang and J. Zou: J. Non. Cryst. Solids, 2006, vol. 352, pp. 3109-3112. https://doi.org/10.1016/j.jnoncrysol.2006.02.098.

    Article  CAS  Google Scholar 

  15. J. Luo, H. Duan, C. Ma, S. Pang and T. Zhang: Mater. Trans., 2006, vol. 47, pp. 450-453. https://doi.org/10.2320/matertrans.47.450.

    Article  CAS  Google Scholar 

  16. N.D. Campos Neto, C. Soares, F.S. Pereira, V. Bergamaschi, S.G. Antonio, M.J. Kaufman and M.F. de Oliveira: J. Non. Cryst. Solids, 2020, 528, 119762. https://doi.org/10.1016/j.jnoncrysol.2019.119762

    Article  CAS  Google Scholar 

  17. N.D. Campos Neto, W.M. de Paula, F.S. Pereira, C.J. Parrish and M.F. de Oliveira: Mater. Res., 2018, 21(6): e20171088. https://doi.org/10.1590/1980-5373-mr-2017-1088

    Article  CAS  Google Scholar 

  18. R. Mackay, G.J. Miller and H.F. Franzen: J. Alloys Comp., 1994, 204(1-2), 109-118. https://doi.org/10.1016/0925-8388(94)90079-5

    Article  CAS  Google Scholar 

  19. N.J. Clark and E. Wu: J. Less-Com. Met., 1990, vol. 163, pp. 227-243. https://doi.org/10.1016/0022-5088(90)90589-C

    Article  CAS  Google Scholar 

  20. M.G. Paton and E.N. Maslen: Acta Cryst., 1965, vol.19, pp. 307. https://doi.org/10.1107/S0365110X65003365

    Article  CAS  Google Scholar 

  21. Y. Zhang, M.X. Pan, D.Q. Zhao, R.J. Wang and W.H. Wang: Mater. Trans. JIM, 2000, v. 41, n. 11, pp. 1410-1414. https://doi.org/10.2320/matertrans1989.41.1410

    Article  CAS  Google Scholar 

  22. W.J. Peng and Y. Zhang: Progr. Nat. Sci. 2011, 21(1), 46-52 https://doi.org/10.1016/S1002-0071(12)60024-0

    Article  Google Scholar 

  23. J.J. Wall, J.D. Almer, S.C. Vogel, P.K. Liaw, H. Choo and C.T. Liu: Scr. Mater., 2009, vol. 61, pp. 293-295. https://doi.org/10.1016/j.scriptamat.2009.04.004

    Article  CAS  Google Scholar 

  24. N.D. Campos Neto, F.S. Pereira, S.G. Antonio, Y. Guo, A.J. Clarke, M.J. Kaufman and M.F. de Oliveira: Mater. Charac., 2019, 158, 109932 https://doi.org/10.1016/j.matchar.2019.109932

    Article  Google Scholar 

  25. W.H. Wang, Z. Bian, P. Wen, Y. Zhang, M.X. Pan and D.Q. Zhao: Intermetallics, 2002, v. 10, n. 11–12, pp. 1249-1257. https://doi.org/10.1016/S0966-9795(02)00140-1

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the LNLS for provision of synchrotron radiation facilities and specially Dra. Cristiane Barbieri Rodella for assistance at the XPD beamline. We also thank FAPESP, CNPq, and CAPES for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelson Delfino de Campos Neto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 6, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Campos Neto, N.D., de Carvalho Lopes Rocha, R.F., Pereira, F.S. et al. Effective Method to Enhance the Glass-Forming Ability of Vitreloy 105 Containing High Oxygen Concentrations. Metall Mater Trans A 51, 3518–3525 (2020). https://doi.org/10.1007/s11661-020-05775-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05775-4

Navigation