Skip to main content
Log in

Interdiffusion, Solubility Limit, and Role of Entropy in FCC Al-Co-Cr-Fe-Ni Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

High entropy and sluggish diffusion “core” effects were investigated in an FCC Al-Co-Cr-Fe-Ni alloy by examining the nonequiatomic compositions generated by the concentration profiles within the solid-to-solid diffusion couple, Al48Ni52vs Co25Cr25Fe25Ni25, annealed at 900 °C, 1000 °C, 1100 °C, and 1200 °C. The average effective interdiffusion coefficients of individual components and the maximum solubility limit of Al in nonequiatomic Al-Co-Cr-Fe-Ni alloys were determined as a function of temperature. The magnitudes of the average effective interdiffusion coefficients in Al-Co-Cr-Fe-Ni alloys were compared to the interdiffusion coefficients in relevant ternary and quaternary alloys. The solubility limit of Al in nonequiatomic AlpCoqCrrFesNit alloys was compared to that of Al in equiatomic AlxCoCrFeNi determined from the equilibrium pseudo-binary phase diagram. A reduction in the magnitude of interdiffusion coefficients was not observed for individual components in Al-Co-Cr-Fe-Ni alloys. The maximum solubility of Al in nonequiatomic AlpCoqCrrFesNit alloys was observed to be higher than that in equiatomic AlxCoCrFeNi alloys at a temperature of 1100 °C or above. Correspondingly, the free energy of mixing for nonequiatomic AlpCoqCrrFesNit alloys was determined to be lower than that of equiatomic AlxCoCrFeNi alloys at a temperature of 1100 °C or above. At a temperature of 1100 °C or above, the role of enthalpy of mixing was estimated to be significant in achieving higher thermodynamic stability of the nonequiatomic AlpCoqCrrFesNit alloy than in the equiatomic AlxCoCrFeNi alloy for the compositions corresponding to the highest solubility limit for Al. The compositions of nonequiatomic AlpCoqCrrFesNit alloys were observed to follow the existing empirical rules for the formation of single phase in high entropy alloys (HEAs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.W. Yeh: Ann. Chim. Sci. Mater., 2006, vol. 31, pp. 633–48.

    CAS  Google Scholar 

  2. E. Pickering and N. Jones: Int. Mater. Rev., 2016, vol. 61, pp. 183–202.

    CAS  Google Scholar 

  3. W.R. Wang, W.L. Wang, S.C. Wang, Y.C. Tsai, C.H. Lai, and J.W. Yeh: Intermetallics, 2012, vol. 26, pp. 44–51.

    Google Scholar 

  4. J. He, W. Liu, H. Wang, Y. Wu, X. Liu, T. Nieh, and Z. Lu: Acta Mater., 2014, vol. 62, pp. 105–13.

    CAS  Google Scholar 

  5. Y. Guo, L. Liu, Y. Zhang, J. Qi, B. Wang, Z. Zhao, J. Shang, and J. Xiang: J. Mater. Res., 2018, vol. 33, pp. 3258–65.

    CAS  Google Scholar 

  6. F. Zhang, C. Zhang, S.-L. Chen, J. Zhu, W.-S. Cao, and U.R. Kattner: CALPHAD, 2014, vol. 45, pp. 1–10.

    Google Scholar 

  7. F. Otto, Y. Yang, H. Bei, and E.P. George: Acta Mater., 2013, vol. 61, pp. 2628–38.

    CAS  Google Scholar 

  8. K.Y. Tsai, M.H. Tsai, and J.W. Yeh: Acta Mater., 2013, vol. 61, pp. 4887–97.

    CAS  Google Scholar 

  9. M. Vaidya, S. Trubel, B. Murty, G. Wilde, and S.V. Divinski: J. Alloys Compd., 2016, vol. 688, pp. 994–1001.

    CAS  Google Scholar 

  10. M. Vaidya, K. Pradeep, B. Murty, G. Wilde, and S. Divinski: Acta Mater., 2018, vol. 146, pp. 211–24.

    CAS  Google Scholar 

  11. M. Vaidya, K. Pradeep, B. Murty, G. Wilde, and S. Divinski: Scient. Rep., 2017, vol. 7, pp. 1–11.

    Google Scholar 

  12. J. Dąbrowa, W. Kucza, G. Cieślak, T. Kulik, M. Danielewski, and J.-W. Yeh: J. Alloys Compd., 2016, vol. 674, pp. 455–62.

    Google Scholar 

  13. D. Beke and G. Erdélyi: Mater. Lett., 2016, vol. 164, pp. 111–13.

    CAS  Google Scholar 

  14. T.R. Paul, I.V. Belova, and G.E. Murch: Mater. Chem. Phys., 2018, vol. 210, pp. 301–08.

    CAS  Google Scholar 

  15. A. Allnatt, T. Paul, I. Belova, and G. Murch: Phil. Mag., 2016, vol. 96, pp. 2969–85.

    CAS  Google Scholar 

  16. K. Kulkarni and G.P.S. Chauhan: AIP Adv., 2015, vol. 5, pp. 1–7.

    Google Scholar 

  17. V. Verma, A. Tripathi, and K.N. Kulkarni: J. Phase Equil. Diffus., 2017, vol. 38, pp. 445–56.

    CAS  Google Scholar 

  18. A. Mehta, L. Zhou, E.A. Schulz, D.D. Keiser, J.I. Cole, and Y. Sohn: J. Phase Equil. Diffus., 2018, vol. 39, pp. 246–54.

    CAS  Google Scholar 

  19. Y. Park, R. Newell, A. Mehta, D. Keiser, Jr., and Y. Sohn: J. Nucl. Mater., 2018, vol. 502 pp. 42–50.

    CAS  Google Scholar 

  20. E.A. Schulz, A. Mehta, I.V. Belova, G.E. Murch, and Y. Sohn: J. Phase Equil. Diffus., 2018, vol. 39, pp. 862–69.

    CAS  Google Scholar 

  21. L. Onsager: Ann. New York Acad. Sci., 1945, vol. 46, pp. 241–65.

    CAS  Google Scholar 

  22. M. Dayananda and C. Kim: Metall. Mater. Trans. A, 1979, vol. 10A, pp. 1333–39.

    CAS  Google Scholar 

  23. J.S. Kirkaldy: Can. J. Phys., 1957, vol. 35, pp. 435–40.

    CAS  Google Scholar 

  24. M. Dayananda and Y. Sohn: Scripta Mater., 1996, vol. 35, pp. 683–88.

    CAS  Google Scholar 

  25. D. Liu, L. Zhang, Y. Du, H. Xu, and Z. Jin: J. Alloys Compd., 2013, vol. 566, pp. 156–63.

    CAS  Google Scholar 

  26. K. Cheng, D. Liu, L. Zhang, Y. Du, S. Liu, and C. Tang: J. Alloys Compd., 2013, vol. 579, pp. 124–31.

    CAS  Google Scholar 

  27. Q. He, Y. Ye, and Y. Yang: J. Appl. Phys., 2016, vol. 120, pp. 1–10.

    Google Scholar 

  28. Q. He, Y. Ye, and Y. Yang: J. Phase Equil. Diffus., 2017, vol. 38, pp. 416–25.

    CAS  Google Scholar 

  29. H. Bakker: Enthalpies in Alloys: Miedema’s Semi-Empirical Model, Enfield Publishing & Distribution Company, Enfield, NH, 1998.

    Google Scholar 

  30. A. Takeuchi and A. Inoue: Mater. Trans., 2005, vol. 46, pp. 2817–29.

    CAS  Google Scholar 

  31. I. Ford: Statistical Physics: An Entropic Approach, 1st ed., John Wiley & Sons, Hoboken, NJ, 2013.

    Google Scholar 

  32. S. Fang, X. Xiao, L. Xia, W. Li, and Y. Dong: J. Non-Cryst. Solids, 2013, vol. 321, pp. 120–25.

    Google Scholar 

  33. A. Takeuchi and A. Inoue: Mater. Trans., JIM, 2000, vol. 41, pp. 1372–78.

    CAS  Google Scholar 

  34. X. Yang and Y. Zhang: Mater. Chem. Phys., 2012, vol. 132, pp. 233–38.

    CAS  Google Scholar 

  35. U. Mizutani: Hume-Rothery Rules for Structurally Complex Alloy Phases, CRC Press, Boca Raton, FL, 2016.

    Google Scholar 

  36. S. Guo, C. Ng, J. Lu, and C. Liu: J. Appl. Phys., 2011, vol. 109, pp. 1–5.

    Google Scholar 

  37. J.G. Duh and M.A. Dayananda: Diffus. Def. Data, 1985, vol. 39, pp. 1–50.

    CAS  Google Scholar 

  38. Y.F. Kao, T.J. Chen, S.K. Chen, and J.W. Yeh: J. Alloys Compd., 2009, vol. 488, pp. 57–64.

    CAS  Google Scholar 

  39. M. Komarasamy, T. Wang, K. Liu, L. Reza-Nieto, and R.S. Mishra: Scripta Mater., 2019, vol. 162, pp. 38–43.

    CAS  Google Scholar 

  40. S. Guo, Q. Hu, C. Ng, and C. Liu: Intermetallics, 2013, vol. 41, pp. 96–103.

    Google Scholar 

  41. M. Poletti and L. Battezzati: Acta Mater., 2014, vol. 75, pp. 297–306.

    CAS  Google Scholar 

  42. X. Yang, S. Chen, J. Cotton, and Y. Zhang: JOM, 2014, vol. 66, pp. 2009–20.

    CAS  Google Scholar 

  43. Y. Dong, Y. Lu, L. Jiang, T. Wang, and T. Li: Intermetallics, 2014, vol. 52, pp. 105–09.

    CAS  Google Scholar 

  44. Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw: Adv. Eng. Mater., 2008, vol. 10, pp. 534–38.

    CAS  Google Scholar 

  45. M.X. Ren, B.S. Li, and H.Z. Fu: Trans. Nonferr. Met. Soc. China, 2013, vol. 23, pp. 991–95.

    CAS  Google Scholar 

  46. A. Takeuchi, K. Amiya, T. Wada, K. Yubuta, W. Zhang, and A. Makino: Entropy, 2013, vol. 15, pp. 3810–21.

    CAS  Google Scholar 

  47. L. Jiang, Y. Lu, H. Jiang, T. Wang, B. Wei, Z. Cao, and T. Li: Mater. Sci. Technol., 2016, vol. 32, pp. 588–92.

    CAS  Google Scholar 

  48. D. Miracle and O. Senkov: Acta Mater., 2017, vol. 122, pp. 448–511.

    CAS  Google Scholar 

  49. A.K. Singh, N. Kumar, A. Dwivedi, and A. Subramaniam: Intermetallics, 2014, vol. 53, pp. 112–19.

    CAS  Google Scholar 

  50. Y. Ye, Q. Wang, J. Lu, C. Liu, and Y. Yang: Scripta Mater., 2015, vol. 104, pp. 53–55.

    CAS  Google Scholar 

  51. D. King, S. Middleburgh, A. McGregor, and M. Cortie: Acta Mater., 2016, vol. 104, pp. 172–79.

    CAS  Google Scholar 

  52. Z. Wang, Y. Huang, Y. Yang, J. Wang, and C. Liu: Scripta Mater., 2015, vol. 94, pp. 28–31.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongho Sohn.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 10, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehta, A., Sohn, Y. Interdiffusion, Solubility Limit, and Role of Entropy in FCC Al-Co-Cr-Fe-Ni Alloys. Metall Mater Trans A 51, 3142–3153 (2020). https://doi.org/10.1007/s11661-020-05742-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05742-z

Navigation