Skip to main content
Log in

Effects of Robotic Hammer Peening on Structural Properties of Ni-Based Single-Crystal Superalloy: Dislocation Slip Traces and Crystallographic Reorientations

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

We studied the morphological and crystallographic properties of Ni-based single-crystal superalloys, addressing their surface and near-surface structural evolutions upon robotic hammer peening (RHP) by employing surface profiling, X-ray diffraction, scanning electron microscopy, and electron backscatter diffraction. By varying the diameter (DHH) of the spherical hammer head and the driving pressure (PRHP), we found that the RHP process with the increased DHH and PRHP tends to improve the surface smoothness and, meanwhile, reduce the RHP-induced step height at the boundary between the peened and unpeened areas, especially on the surface with a deformed layer caused by wire electrical discharge machining (EDM). The surface step height can also be reduced by removing the EDM-deformed layer before the RHP process. Straight and crosshatching DSTs were observed in the transition zones surrounding the peened area, where none or minor crystal reorientations occurred. In comparison, the RHP-induced crystal reorientation is much more significant in the peened area and the reorientation direction is associated with the surface normal direction, i.e., the compression loading axis of the RHP process. The RHP-induced crystal reorientations are discussed and attributed to the non-Schmid behavior associated with multiple cross-slips of superalloys under dynamic compressive loadings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Azhari, S. Sulaiman, and A.K.P. Rao: IOP Conf. Ser.: Mater. Sci. Eng., 2016, vol. 114, pp. 012002-1–012002-10.

  2. S.-H. Han, J.-W. Han, Y.-Y. Nan, and I.-H. Cho: Fatig. Fract. Eng. Mater. Struct., 2009, vol. 32, pp. 573–79.

    Article  Google Scholar 

  3. F. Bleicher, C. Lechner, C. Habersohn, E. Kozeschnik, B. Adjassoho, and H. Kaminski: CIRP Annals, 2012, vol. 61, pp. 375–78.

    Article  Google Scholar 

  4. V. Schulze, F. Bleicher, P. Groche, Y.B. Guo, and Y.S. Pyun: CIRP Annals, 2016, vol. 65, pp. 809–32.

    Article  Google Scholar 

  5. C. Kanger, H. Hadidi, S. Akula, C. Sandman, J. Quint, M. Alsunni, R. Underwood, C. Slafter, J. Sonderup, M. Spilinek, J. Casias, P. Rao, and M.P. Sealy: Effect of Process Parameters and Shot Peening on Mechanical Behavior of ABS Parts Manufactured by Fused Filament Fabrication (FFF), 2017, pp. 444–58.

  6. W. Guo, R. Sun, B. Song, Y. Zhu, F. Li, Z. Che, B. Li, C. Guo, L. Liu, and P. Peng: Surf. Coat. Technol., 2018, vol. 349, pp. 503–10.

    Article  CAS  Google Scholar 

  7. R. Sun, L. Li, Y. Zhu, W. Guo, P. Peng, B. Cong, J. Sun, Z. Che, B. Li, C. Guo, and L. Liu: J. Alloys Compd., 2018, vol. 747, pp. 255–65.

    Article  CAS  Google Scholar 

  8. B. AlMangour and J.-M. Yang: Mater. Des., 2016, vol. 110, pp. 914–24.

    Article  CAS  Google Scholar 

  9. N.E. Uzan, S. Ramati, R. Shneck, N. Frage, and O. Yeheskel: Addit. Manufact., 2018, vol. 21, pp. 458–64.

    CAS  Google Scholar 

  10. D. Thibault, R. Simoneau, J. Lanteigne, and J.-L. Fihey: Mater. Sci. Forum, 2005, vols. 490–491, pp. 352–57.

    Article  Google Scholar 

  11. B. Hazel, J. Côté, Y. Laroche, and P. Mongenot: In-Situ Robotic Interventions in Hydraulic Turbines, 2010, pp. 1–6.

  12. B. Hazel, J. Côté, Y. Laroche, and P. Mongenot: J. Field Robotics, 2012, vol. 29, pp. 102–22.

    Article  Google Scholar 

  13. M. Segersäll: Research Thesis, Linköping University, Linköping, Sweden, 2013.

  14. R. Hashizume, A. Yoshinari, T. Kiyono, Y. Murata, and M. Morinaga: Energy Mater., 2007, vol. 2, pp. 5–12.

    Article  CAS  Google Scholar 

  15. A. Morancais, M. Fevre, M. Francois, N. Guel, S. Kruch, P. Kanoute, and A. Longuet: J. Appl. Crystallogr., 2015, vol. 48, pp. 1761–76.

    Article  CAS  Google Scholar 

  16. G.X. Lu, J.D. Liu, H.C. Qiao, Y.Z. Zhou, T. Jin, X.F. Sun, and Z.Q. Hu: J. Alloys Compd., 2016, vol. 658, pp. 721–25.

    Article  CAS  Google Scholar 

  17. C. Yang: J. Mech. Sci. Technol., 2005, vol. 19, pp. 802–10.

    Article  Google Scholar 

  18. R.L. Fleischer: J. Mech. Phys. Solids, 1958, vol. 6, pp. 301–06.

    Article  Google Scholar 

  19. Z. Liu, H. Zhong, Y. Wang, S. Li, and H. Fu: J. Mater. Res., 2018, vol. 33, pp. 2796–2805.

    Article  CAS  Google Scholar 

  20. E.F. Westbrooke, L.E. Forero, and F. Ebrahimi: Acta Mater., 2005, vol. 53, pp. 2137–47.

    Article  CAS  Google Scholar 

  21. P. Zhang, Y. Yuan, B. Li, S.W. Guo, G.X. Yang, and X.L. Song: Mater. Sci. Eng.: A, 2016, vol. 655, pp. 152–59.

    Article  CAS  Google Scholar 

  22. R.V. Miner, T.P. Gabb, J. Gayda, and K. Hemker: Metall. Mater. Trans. A, 1986, vol. 17A, pp. 507–12.

    Article  CAS  Google Scholar 

  23. A. Nitz, U. Lagerpusch, and E. Nembach: Acta Mater., 1998, vol. 46, pp. 4769–79.

    Article  CAS  Google Scholar 

  24. Y. Chen and C. Jiang: Mater. Trans., 2013, vol. 54, pp. 1894–97.

    Article  CAS  Google Scholar 

  25. A. Morancais, M. Fevre, M. François, P. Kanoute, S. Kruch, and A. Longuet: Adv. Mater. Res., 2014, vol. 996, pp. 70–75.

    Article  Google Scholar 

  26. R. Pippan and A. Hohenwarter: Fatig. Fract. Eng. Mater. Struct., 2017, vol. 40, pp. 471–95.

    Article  CAS  Google Scholar 

  27. A. Wang, P.F. Thomson, and P.D. Hodgson: J. Mater. Process. Technol., 1996, vol. 60, pp. 95–102.

    Article  Google Scholar 

  28. B. Zhao, Y. Lv, Y. Ding, L. Wang, and W. Lu: Mater. Charact., 2018, vol. 144, pp. 77–85.

    Article  CAS  Google Scholar 

  29. M. Guagliano: J. Mater. Processing Technol., 2001, vol. 110, pp. 277–86.

    Article  Google Scholar 

  30. D. Bettge and W. Österle: Scripta Mater., 1999, vol. 40, pp. 389–95.

    Article  CAS  Google Scholar 

  31. H. Gao and Y. Huang: Scripta Mater., 2003, vol. 48, pp. 113–18.

    Article  CAS  Google Scholar 

  32. G. Winther: Acta Mater., 2008, vol. 56, pp. 1919–32.

    Article  CAS  Google Scholar 

  33. B. Liu, D. Raabe, F. Roters, and A. Arsenlis: Acta Mater., 2014, vol. 79, pp. 216–33.

    Article  Google Scholar 

  34. J. Jiang, T. Zhang, F.P.E. Dunne, and T.B. Britton: Proc. R. Soc. A: Mathem., Phys. Eng. Sci., 2016, vol. 472, pp. 20150690-1–20150690-24.

  35. H. Chen, J.W. Kysar, and Y.L. Yao: J. Appl. Mech., 2004, vol. 71, pp. 713–23.

    Article  CAS  Google Scholar 

  36. D.P. Pope and S.S. Ezz: Int. Met. Rev., 1984, vol. 29, pp. 136–67.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by an A*STAR RIE2020 advanced manufacturing and engineering (AME) programmatic grant through the structural metal alloys program (SMAP, Grant No. A18B1b0061).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongfei Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted on December 16, 2019.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3664 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Tan, C.K.I., Cheng, W.S. et al. Effects of Robotic Hammer Peening on Structural Properties of Ni-Based Single-Crystal Superalloy: Dislocation Slip Traces and Crystallographic Reorientations. Metall Mater Trans A 51, 3180–3193 (2020). https://doi.org/10.1007/s11661-020-05734-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05734-z

Navigation