Skip to main content
Log in

Low Cycle Fatigue Behavior of a Directionally Solidified Nickel-Based Superalloy: Mechanistic and Microstructural Aspect

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the present research, efforts were made to understand the mechanistic and microstructural aspects of the low cycle fatigue failure of a directionally solidified (DS) nickel-based superalloy under relevant operating conditions. The differences between the dislocation structures observed during different temperatures and strain amplitudes are clearly shown in the transmission electron (TEM) micrographs and are giving rise to the divergence in associated LCF responses. The deformation mechanism changes as a function of temperature. While shearing of γ′-precipitates by stacking faults is the dominant deformation mechanism at the lowest temperature (750 °C), γ′-coarsening and dislocation networks are prevalent at the highest temperatures (930 °C). Mixed deformation behavior is observed at the intermediate temperature (850 °C). Constituent’s phases of the alloy also play crucial roles during deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. K. Harris, G.L. Erickson, and R.E. Schwer: Superalloys 1984, 1984, pp. 221–30.

    Google Scholar 

  2. M.V. Nathal, R.A. Mackay, and R.G. Garlick: Materials Science and Engineering, 1985, vol. 75, pp. 195–205.

    Article  CAS  Google Scholar 

  3. I.S. Kim, B.G. Choi, H.U. Hong, Y.S. Yoo, and C.Y. Jo: Materials Science and Engineering A, 2011, vol. 528(24), pp. 7149-55.

    Article  CAS  Google Scholar 

  4. J. Grodzki, N. Hartmann, R. Rettig, E. Affeldt, and R.F. Singer: Metall and Mat Trans A, 2016, vol. 47, pp. 2914–26.

    Article  Google Scholar 

  5. J.T. Guo, C. Yuan, H.C. Yang, V. Lupinc, and M. Maldini: Metallurgical and Materials Transactions A, 2001, vol. 32, pp. 1103–1110.

    Article  CAS  Google Scholar 

  6. M. Valsan, D.H. Sastry, K.B. Sankara Rao, and S.L. Mannan: Metallurgical and Materials Transactions A, 1994, vol. 25, pp. 159–71.

  7. J. Tong, S. Dalby, J. Byrne, M.B. Henderson, and M.C. Hardy: International Journal of Fatigue, 2001, vol. 23, pp. 897–902.

    Article  CAS  Google Scholar 

  8. M. Maldini, M. Marchionni, M. Nazmy, M. Staubli, and G. Osinkolu: TMS, Warrendale, PA, USA, 1996, pp. 327–34.

    Google Scholar 

  9. R.J. Kashinga, L.G. Zhao, V. V Silberschmidt, F. Farukh, N.C. Barnard, M.T. Whittaker, D. Proprentner, B. Shollock, and G. McColvin: Materials Science and Engineering: A, 2017, vol. 708, pp. 503–13.

    Article  CAS  Google Scholar 

  10. H. Zhou, Y. Ro, H. Harada, Y. Aoki, and M. Arai: Materials Science and Engineering: A, 2004, vol. 381, pp. 20–7.

    Article  Google Scholar 

  11. P. Li, Q.Q. Li, T. Jin, Y.Z. Zhou, J.G. Li, X.F. Sun, and Z.F. Zhang: International Journal of Fatigue, 2014, vol. 63, pp. 137–44.

    Article  CAS  Google Scholar 

  12. A. Nagesha, M. Valsan, R. Kannan, K. BhanuSankaraRao, and S.L. Mannan: Int. J. Fatigue, 2002, vol. 24, pp. 1285–93.

    Article  CAS  Google Scholar 

  13. M. Marchionni, G.A. Osinkolu, and M. Maldini: Fatigue & Fracture of Engineering Materials and Structures, 1996, vol. 19, pp. 955–62.

    Article  CAS  Google Scholar 

  14. A. Pineau and S.D. Antolovich: Engineering Failure Analysis, 2009, vol. 16, pp. 2668–97.

    Article  CAS  Google Scholar 

  15. R. Rahouadj, J. Menigault, and M. Clavel: Materials Science and Engineering, 1987, vol. 93, pp. 181–90.

    Article  CAS  Google Scholar 

  16. H. Tsuji and T. Kondo: Journal of Nuclear Materials, 1987, vol. 150, pp. 259–65.

    Article  CAS  Google Scholar 

  17. R.K. Rai, J.K. Sahu, S.K. Das, N. Paulose, D.C. Fernando, and C. Srivastava: Materials Characterization, 2018, vol. 141, pp. 120-8.

    Article  CAS  Google Scholar 

  18. M. Valsan, P. Parameswaran, K. BhanuSankaraRao, M. Vijayalakshmi, S.L. Mannan, and D.H. Shastry: Metallurgical and Materials Transactions A, 1992, vol. 23, pp. 1751–61.

    Article  CAS  Google Scholar 

  19. T.P. Gabb, J. Gayda, and R.V. Miner: Metallurgical and Materials Transactions A, 1986, vol. 17(3), pp. 497-505.

    Article  CAS  Google Scholar 

  20. Z.F. Yue and Z.Z. Lu: Metallurgical and Materials Transactions A, 1995, vol. 26(7), pp. 1815-21.

    Article  CAS  Google Scholar 

  21. J.H. Zhang, Z.Q. Hu, Y.B. Xu, and Z.G. Wang: Metallurgical and Materials Transactions A, 1992, vol. 23, pp. 1253–8.

    Article  CAS  Google Scholar 

  22. X.G. Wang, J.L. Liu, T. Jin, X.F. Sun, Y.Z. Zhou, Z.Q. Hu, J.H. Do, B.G. Choi, I.S. Kim, and C.Y. Jo: Scripta Materialia, 2015, vol. 99, pp. 57–60.

    Article  CAS  Google Scholar 

  23. M. Gell and G.R. Leverant: in Fatigue at elevated temperatures, ASTM International, Philadelphia, 1973, pp. 37-67.

    Book  Google Scholar 

  24. H. Mughrabi: Materials Science and Technology, 2009, vol. 25, pp. 191–204.

    Article  CAS  Google Scholar 

  25. R.K. Rai, J.K. Sahu, A. Pramanick, N. Paulose, DC. Fernando, and S.K. Das: Materials Characterization, 2019, vol. 150, pp. 155–65.

    Article  CAS  Google Scholar 

  26. R.K. Rai, J.K. Sahu, P.S.M. Jena, S.K. Das, N. Paulose, and D.C. Fernando: Journal of Materials Engineering and Performance, 2018, vol. 27(2), pp. 659-65.

    Article  CAS  Google Scholar 

  27. R.K. Rai, J.K. Sahu, P.S.M. Jena, S.K. Das, N. Paulose, and C.D. Fernando: Materials Science and Engineering A, 2017, vol. 705, pp.189-95.

    Article  CAS  Google Scholar 

  28. Z. He, Y. Zhang, W. Qiu, H.-J. Shi, and J. Gu: Materials Science and Engineering: A, 2016, vol. 676, pp. 246–52.

    Article  CAS  Google Scholar 

  29. R.K. Rai and J.K. Sahu: Materials Letters, 2018, vol. 230, pp. 241–4.

    Article  CAS  Google Scholar 

  30. A. Ince and G. Glinka: Fatigue & Fracture of Engineering Materials & Structures, 2011, vol. 34, pp. 854–67.

    Article  CAS  Google Scholar 

  31. N.E. Dowling: Mean Stress Effects in Stress-Life and Strain-Life Fatigue, 2004.

  32. M. Valsan, D.H. Sastry, K.B. SankaraRao, and S.L. Mannan: Metallurgical and Materials Transactions A, 1994, vol. 25, pp. 159–171.

    Article  CAS  Google Scholar 

  33. R.K. Rai and J.K. Sahu: Materials Science and Technology, 2019, vol. 35, pp. 1220–6.

    Article  CAS  Google Scholar 

  34. M.Z. Alam, D.V. Satyanarayana, D. Chatterjee, R. Sarkar, D.K. Das: Procedia Engineering, 2013, vol. 55, pp. 835 – 841.

    Article  CAS  Google Scholar 

  35. R. Maldonado and E. Nembach: Acta Materialia, 1997, vol. 45, pp. 213–24.

    Article  CAS  Google Scholar 

  36. J.X. Zhang, H. Harada, Y. Ro, Y. Koizumi, and T. Kobayashi: Acta materialia, 2008, vol. 56, pp. 2975–87.

    Article  CAS  Google Scholar 

  37. Y. Li, F. Pyczak, J. Paul, M. Oehring, U. Lorenz, Z. Yao, and Y. Ning: Materials Science and Engineering: A, 2018, vol. 719, pp. 43–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Rai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted on August 1, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rai, R.K., Sahu, J.K., Paulose, N. et al. Low Cycle Fatigue Behavior of a Directionally Solidified Nickel-Based Superalloy: Mechanistic and Microstructural Aspect. Metall Mater Trans A 51, 2752–2765 (2020). https://doi.org/10.1007/s11661-020-05720-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05720-5

Navigation