Skip to main content
Log in

Effects of Y on the Deformation Mechanisms of Extruded Mg-Y Sheets During Room-Temperature Compression

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effects of yttrium (Y) contents on the slip/twinning activity in extruded Mg-xY (x = 0-5, wt pct) sheets during room temperature (RT) compression were investigated quantitatively and statistically using a quasi-in-situ scanning electron microscope (SEM), electron backscatter diffraction (EBSD) combined with slip trace analysis and twin boundary misorientation analysis. No observable slip trace was found in the pure Mg, while the fraction of grains exhibiting slip traces increased up to ~ 24 pct with increasing Y content. Grain-by-grain slip trace analysis showed that the relative activity of pyramidal 〈c + a〉 slips increased up to ~ 16 pct with increasing Y. Schmid factor analysis implied that increasing Y could promote basal 〈a〉 slip, while it had little effect on pyramidal 〈c + a〉 slips. Considering the observed opposite trends of the slip activity, it is reasonable to conclude that Y addition could lower the critical resolved shear stress (CRSS) ratio of pyramidal 〈c + a〉 slip/basal 〈a〉 slip. The dramatic texture change and twin boundary misorientation analysis revealed that almost all the grains twinned heavily in pure Mg after failure, and twinning was remarkably suppressed with increasing Y content. The dominant twinning mode was the {10\( \bar{1} \)2} tensile twinning for all the samples studied. The present study clearly showed that Y alloying could significantly depress twinning and promote slip, especially for pyramidal slip, even at RT deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. [1] T.M. Pollock: Science, 2010, vol. 328, pp. 986-87.

    CAS  Google Scholar 

  2. [2] K. Hamad, Y.G. Ko: Scientific Reports, 2016, vol. 6, pp. 29954-61.

    CAS  Google Scholar 

  3. [3] B.L. Mordike, T. Ebert: Mater. Sci. Eng. A, 2001, vol. 302, pp. 37-45.

    Google Scholar 

  4. [4] Z. Wu, W.A. Curtin: Nature, 2015, vol. 526, pp. 62-67.

    CAS  Google Scholar 

  5. [5] H. Wang, C.J. Boehlert, Q.D. Wang, D.D. Yin, W.J. Ding: Mater. Char., 2016, vol. 116, pp. 8-17.

    CAS  Google Scholar 

  6. [6] C.M. Cepeda-Jiménez, C. Prado-Martínez, M.T. Pérez-Prado: Acta Mater., 2018, vol. 145, pp. 264-77.

    Google Scholar 

  7. [7] H. Yan, S.W. Xu, R.S. Chen, S. Kamado, T. Honma, E.H. Han: J. Alloy. Compd., 2013, vol. 566, pp. 98-107.

    CAS  Google Scholar 

  8. [8] I.J. Beyerlein, L. Capolungo, P.E. Marshall, R.J. McCabe, C.N. Tomé: Philos. Mag., 2010, vol. 90, pp. 2161-90.

    CAS  Google Scholar 

  9. [9] M.K. Kulekci: Int. J. Adv. Manuf. Technol., 2008, vol. 39, pp. 851-65.

    Google Scholar 

  10. [10] S. Sandlöbes, Z. Pei, M. Friák, L.F. Zhu, F. Wang, S. Zaefferer, D. Raabe, J. Neugebauer: Acta Mater., 2014, vol. 70, pp. 92-104.

    Google Scholar 

  11. [11] S. Sandlöbes, S. Zaefferer, I. Schestakow, S. Yi, R. Gonzalez-Martinez: Acta Mater., 2011, vol. 59, pp. 429-39.

    Google Scholar 

  12. [12] G.B. Liu, J. Zhang, G.Q. Xi, R.L. Zuo, S. Liu: Acta Mater., 2017, vol. 141, pp. 1-9.

    Google Scholar 

  13. [13] A. Kula, X. Jia, R.K. Mishra, M. Niewczas: Int. J. Plast., 2017, vol. 92, pp. 96-121.

    CAS  Google Scholar 

  14. [14] A. Kula, X. Jia, R.K. Mishra, M. Niewczas: Metall. Mater. Trans. B, 2016, vol. 47, pp. 3333-42.

    Google Scholar 

  15. [15] D.D. Yin, Q.D. Wang, Y. Gao, C.J. Chen, J. Zheng: J. Alloy. Compd., 2011, vol. 509, pp. 1696-1704.

    CAS  Google Scholar 

  16. [16] D.D. Yin, Q.D. Wang, C.J. Boehlert, V. Janik, Y. Gao, W.J. Ding: Mater. Sci. Eng. A, 2012, vol. 546, pp. 239-47.

    CAS  Google Scholar 

  17. [17] D.D. Yin, Q.D. Wang, C.J. Boehlert, W.J. Ding: J. Mater. SCI., 2012, vol. 47, pp. 6263-75.

    CAS  Google Scholar 

  18. [18] D.D. Yin, Q.D. Wang, C.J. Boehlert, W.J. Ding: Metall. Mater. Trans. A, 2016, vol. 47, pp. 1-15.

    Google Scholar 

  19. [19] J. Hirsch, T. Al-Samman: Acta Mater., 2013, vol. 61, pp. 818-43.

    CAS  Google Scholar 

  20. [20] L. Gao, R.S. Chen, E.H. Han: J. Alloy. Compd., 2009, vol. 481, pp. 379-84.

    CAS  Google Scholar 

  21. [21] J.W. Lu, D.D. Yin, G.H. Huang, G.F. Quan, Y. Zeng, H. Zhou, Q.D. Wang: Mater. Sci. Eng. A, 2017, vol. 700, pp. 598-608.

    CAS  Google Scholar 

  22. [22] G.H. Huang, D.D. Yin, J.W. Lu, H. Zhou, Y. Zeng, G.F. Quan, Q.D. Wang: Mater. Sci. Eng. A, 2018, vol. 720, pp. 24-35.

    CAS  Google Scholar 

  23. [23] Z. Wu, R. Ahmad, B. Yin, S. Sandlobes, W.A. Curtin: Science, 2018, vol. 359, pp. 447-52.

    CAS  Google Scholar 

  24. [24] L. Wang, Z. Huang, H. Wang, A. Maldar, S. Yi, J. Park, P. Kenesei, E. Lilleodden, X. Zeng: Acta Mater., 2018, vol. 155, pp. 138-52.

    CAS  Google Scholar 

  25. [25] H. Wang, C.J. Boehlert, Q.D. Wang, D.D. Yin, W.J. Ding: Int. J. Plast., 2016, vol. 84, pp. 255-76.

    CAS  Google Scholar 

  26. [26] C.J. Boehlert, Z. Chen, I. Gutiérrez-Urrutia, J. Llorca, M.T. Pérez-Prado: Acta Mater., 2012, vol. 60, pp. 1889-1904.

    CAS  Google Scholar 

  27. [27] H. Li, C.J. Boehlert, T.R. Bieler, M.A. Crimp: Philos. Mag., 2012, vol. 92, pp. 2923-46.

    CAS  Google Scholar 

  28. [28] Z. Ding, W. Liu, H. Sun, S. Li, D. Zhang, Y. Zhao, E.J. Lavernia, Y. Zhu: Acta Mater., 2018, vol. 146, pp. 265-72.

    CAS  Google Scholar 

  29. [29] W.B. Hutchinson, M.R. Barnett: Scr. Mater., 2010, vol. 63, pp. 737-40.

    CAS  Google Scholar 

  30. [30] A. Chapuis, J.H. Driver: Acta Mater., 2011, vol. 59, pp. 1986-94.

    CAS  Google Scholar 

  31. [31] M. Jahedi, B.A. McWilliams, P. Moy, M. Knezevic: Acta Mater., 2017, vol. 131, pp. 221-32.

    CAS  Google Scholar 

  32. [33] S. Sandlöbes, M. Friák, S. Zaefferer, A. Dick, S. Yi, D. Letzig, Z. Pei, L.F. Zhu,J. Neugebauer,D. Raabe: Acta Mater., 2012, vol. 60, pp. 3011-21.

    Google Scholar 

  33. [34] M.H. Yoo, S.R. Agnew, J.R. Morris, K.M. Ho: Mater. Sci. Eng. A, 2001, vol. 319, pp. 87-92.

    Google Scholar 

  34. [35] M.H. Yoo, J.R. Morris, K.M. Ho, S.R. Agnew: Metall. Mater. Trans. A, 2002, vol. 33, pp. 813-22.

    CAS  Google Scholar 

  35. [36] H.D. Fan, S. Aubry, A. Arsenlis, J.A. El-Awady: Scripta Mater., 2015, vol. 97, pp. 25-28.

    CAS  Google Scholar 

  36. [37] H.D. Fan, S. Aubry, A. Arsenlis, J.A. El-Awady: Scripta Mater., 2016, vol. 112, pp. 50-53.

    CAS  Google Scholar 

  37. [38] C.M. Cepeda-Jiménez, J.M. Molina-Aldareguia, M.T. Pérez-Prado: Acta Mater., 2015, vol. 88, pp. 232-44.

    Google Scholar 

  38. [39] C.M. Cepeda-Jiménez, J.M. Molina-Aldareguia, M.T. Pérez-Prado: Acta Mater., 2015, vol. 84, pp. 443-56.

    Google Scholar 

  39. [40] M. Lentz, M. Klaus, R.S. Coelho, N. Schaefer, F. Schmack, W. Reimers, B. Clausen: Metall. Mater. Trans. A, 2014, vol. 45, pp. 5721-35.

    Google Scholar 

  40. [41] J.J. Bhattacharyya, F. Wang, P.D. Wu, W.R. Whittington, H. El Kadiri, S.R. Agnew: Int. J. Plast., 2016, vol. 81, pp. 123-51.

    CAS  Google Scholar 

  41. [42] H. Somekawa, T. Mukai: Mater. Sci. Eng. A, 2013, vol. 561, pp. 378-85.

    CAS  Google Scholar 

  42. [43] M.R. Barnett, Z. Keshavarz, A.G. Beer, D. Atwell: Acta Mater., 2004, vol. 52, pp. 5093-5103.

    CAS  Google Scholar 

  43. [45] P.A. Juan, C. Pradalier, S. Berbenni, R.J. McCabe, C.N. Tomé, L. Capolungo: Acta Mater., 2015, vol. 95, pp. 399-410.

    CAS  Google Scholar 

  44. M. ArulKumar, M. Wroński, R.J. McCabe, L. Capolungo, K. Wierzbanowski, C.N. Tomé: Acta Mater., 2018, vol. 148, pp. 123-32.

    CAS  Google Scholar 

  45. [47] Q. Yu, L. Qi, R.K. Mishra, J. Li, A.M. Minor: Proceedings of the National Academy of Sciences, 2013, vol. 110, pp. 13289-93.

    CAS  Google Scholar 

  46. [48] C.M. Cepeda-Jiménez, M.T. Pérez-Prado: Acta Mater., 2016, vol. 108, pp. 304-16.

    Google Scholar 

  47. [49] L. Jiang, J.J. Jonas, A.A. Luo, A.K. Sachdev, S. Godet: Mater. Sci. Eng. A, 2007, vol. 445-446, pp. 302-09.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 51401172 and 51601003), the Sichuan Science and Technology Program (2019YJ0238) and open funding from the International Joint Laboratory for Light Alloys (MOE), Chongqing University. We thank the Analytical and Testing Center of Southwest Jiaotong University for assistance with SEM and EBSD experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Yin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 30, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, L.J., Huang, G.H., Yin, D.D. et al. Effects of Y on the Deformation Mechanisms of Extruded Mg-Y Sheets During Room-Temperature Compression. Metall Mater Trans A 51, 2738–2751 (2020). https://doi.org/10.1007/s11661-020-05712-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05712-5

Navigation