Skip to main content
Log in

Microstructural Instability and Precipitation Behaviors of Intermetallic Phases in a Nb-Containing CoNi-Based Superalloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Exploring the alloying effect of various elements plays a crucial role in optimizing the alloy design for superalloys. In this study, the influence of Nb additions on a γ′-strengthening CoNi-based superalloy has been investigated. Undesirable intermetallic phases including the topologically close-packed D85 phase and the ordered D019 phase were observed to preferentially form in the dendritic and interdendritic regions of the investigated alloy, respectively. Precipitation behaviors of the D019 phase and the D85 phase including growth mechanisms and crystallographic orientation relationships have been characterized and analyzed in detail using advanced electron microscopy techniques. First-principle calculations using density function theory have been carried out to evaluate the effect of Nb additions on the thermodynamic stability of the L12-γ′ phase. It turns out that the supercell with L12 structure would be energetically destabilized when the Nb-substituted atom sits on the Co or Al sites, which could correspond to the microstructural instability of the Nb-containing CoNi-based superalloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J. Sato, T. Omori, K. Oikawa, I. Ohnuma, R. Kainuma and K. Ishida, Science 2006, vol. 312, pp. 90-91.

    CAS  Google Scholar 

  2. Charles Samuel Lee, 1971. https://repository.arizona.edu/handle/10150/287709.

  3. A. Suzuki and T. M. Pollock, Acta Mater. 2008, vol. 56, pp. 1288-1297.

    CAS  Google Scholar 

  4. Ivan Povstugar, Pyuck-Pa Choi, Steffen Neumeier, Alexander Bauer, Christopher H. Zenk, Mathias Göken and Dierk Raabe, Acta Mater. 2014, vol. 78, pp. 78-85.

    CAS  Google Scholar 

  5. Y. Chen, F. Xue, S. Mao, H. Long, B. Zhang, Q. Deng, B. Chen, Y. Liu, P. Maguire, H. Zhang, X. Han and Q. Feng, Sci Rep 2017, vol. 7, p. 17240.

    Google Scholar 

  6. Kazuya Shinagawa, Toshihiro Omori, Jun Sato, Katsunari Oikawa, Ikuo Ohnuma, Ryosuke Kainuma and Kiyohito Ishida, Mater. Trans. 2008, vol. 49, pp. 1474-1479.

    CAS  Google Scholar 

  7. Masahiro Ooshima, Katsushi Tanaka, Norihiko L. Okamoto, Kyosuke Kishida and Haruyuki Inui, J. Alloys Compd. 2010, vol. 508, pp. 71-78.

    CAS  Google Scholar 

  8. Eric A. Lass, Metall. Mater. Trans. A 2017, vol. 48, pp. 2443-2459.

    CAS  Google Scholar 

  9. C. H. Zenk, S. Neumeier, H. J. Stone and M. Göken, Intermetallics 2014, vol. 55, pp. 28-39.

    CAS  Google Scholar 

  10. L. Shi, J. J. Yu, C. Y. Cui and X. F. Sun (2015) Mater. Sci. Eng., A , 646, 45-51.

    CAS  Google Scholar 

  11. Z. Fan, X. Wang, Y. Yang, H. Chen, Z. Yang and C. Zhang (2019) Mater. Sci. Eng., A, 748, 267-274.

    CAS  Google Scholar 

  12. A. Bauer, S. Neumeier, F. Pyczak, R. F. Singer and M. Göken (2012) Mater. Sci. Eng., A 550, 333-341.

    CAS  Google Scholar 

  13. F. Xue, H. J. Zhou, Q. Y. Shi, X. H. Chen, H. Chang, M. L. Wang and Q. Feng, Scripta Mater. 2015, vol. 97, pp. 37-40.

    CAS  Google Scholar 

  14. R. K. Rhein, P. G. Callahan, S. P. Murray, J-C. Stinville, M. S. Titus, A. Ven and T. M. Pollock (2018) Metall. Mater. Trans. A 7. 1073-5623.

    Google Scholar 

  15. Toshihiro Omori, Katsunari Oikawa, Jun Sato, Ikuo Ohnuma, Ursula R. Kattner, Ryosuke Kainuma and Kiyohito Ishida, Intermetallics 2013, vol. 32, pp. 274-283.

    CAS  Google Scholar 

  16. HJ Zhou, F Xue, H Chang and Q Feng, J. Mater. Sci. Technol. 2018, vol. 34, pp. 799-805.

    Google Scholar 

  17. S. K. Makineni, B. Nithin and K. Chattopadhyay, Acta Mater. 2014, vol. 85, pp. 85-94.

    Google Scholar 

  18. S. K. Makineni, B. Nithin and K. Chattopadhyay, Scripta Mater. 2014, vol. 98, pp. 36-39.

    Google Scholar 

  19. S. K. Makineni, A. Samanta, T. Rojhirunsakool, T. Alam, B. Nithin, A. K. Singh, R. Banerjee and K. Chattopadhyay, Acta Mater. 2015, vol. 97, pp. 29-40.

    CAS  Google Scholar 

  20. Ashok K Sinha, Prog. Mater Sci. 1972, vol. 15, pp. 81-185.

    Google Scholar 

  21. S. K. Makineni, B. Nithin, D. Palanisamy and K. Chattopadhyay (2016) J. Mater. Sci. Chattopadhyay, 51, 7843-7860.

    CAS  Google Scholar 

  22. Catherine MF Rae and Roger C Reed, Acta Mater. 2001, vol. 49, pp. 4113-4125.

    Google Scholar 

  23. CMF Rae, MSA Karunaratne, CJ Small, RW Broomfield, CN Jones and RC Reed, Superalloys 2000 2000, pp. 767-776.

    Google Scholar 

  24. Satoru Kobayashi, Yuki Tsukamoto and Takayuki Takasugi, Intermetallics 2011, vol. 19, pp. 1908-1912.

    CAS  Google Scholar 

  25. Li Wang, Michael Oehring, Uwe Lorenz, Junjie Yang and Florian Pyczak, Scripta Mater. 2018, vol. 154, pp. 176-181.

    CAS  Google Scholar 

  26. J. Koßmann, C. H. Zenk, I. Lopez-Galilea, S. Neumeier, A. Kostka, S. Huth, W. Theisen, M. Göken, R. Drautz and T. Hammerschmidt, Journal of Materials Science 2015, vol. 50, pp. 6329-6338.

    Google Scholar 

  27. ed. P. Villars and C. Karin (Springer, Berlin: Material Phases Data System (MPDS), Switzerland & National Institute for Materials Science (NIMS)).

  28. B Cheong, YC Feng and DE Laughlin, Scripta metallurgica et materialia 1994, vol. 30, pp. 1419-1424.

    CAS  Google Scholar 

  29. Patricia Almeida Carvalho, PM Bronsveld, BJ Kooi and J Th M De Hosson, Acta Mater. 2002, vol. 50, pp. 4511-4526.

    CAS  Google Scholar 

  30. JM Howe and GJ Mahon, Ultramicroscopy 1989, vol. 30, pp. 132-142.

    CAS  Google Scholar 

  31. G. B. Viswanathan, R. Shi, A. Genc, V. A. Vorontsov, L. Kovarik, C. M. F. Rae and M. J. Mills, Scripta Mater. 2015, vol. 94, pp. 5-8.

    CAS  Google Scholar 

  32. Paraskevas Kontis, Zhuangming Li, David M. Collins, Jonathan Cormier, Dierk Raabe and Baptiste Gault, Scripta Mater. 2018, vol. 145, pp. 76-80.

    CAS  Google Scholar 

  33. JW Edington (1975), Interpretation of Transmission Electron Micrographs. Palgrave, London.

    Google Scholar 

  34. K Hiraga, T Yamamoto and M Hirabayashi, Transactions of the Japan institute of metals 1983, vol. 24, pp. 421-428.

    CAS  Google Scholar 

  35. J Zhu and HQ Ye, Scripta Metallurgica et Materialia 1990, vol. 24, pp. 1861-1866.

    CAS  Google Scholar 

  36. PA Carvalho, HSD Haarsma, BJ Kooi, PM Bronsveld and J Th M De Hosson, Acta Mater. 2000, vol. 48, pp. 2703-2712.

    CAS  Google Scholar 

  37. SV Nagender Naidu, AM Sriramamurthy and P Rama Rao, J. Alloy Phase Diagrams 1986, vol. 2, pp. 43-52.

    Google Scholar 

  38. JM Howe, U Dahmen and R Gronsky, Philos. Mag. A 1987, vol. 56, pp. 31-61.

    CAS  Google Scholar 

  39. S S. Naghavi, V. I. Hegde and C Wolverton (2017), Acta Mater. 132, 467-478.

    CAS  Google Scholar 

  40. Pierre Hohenberg and Walter Kohn, Phys. Rev. 1964, vol. 136, p. B864.

    Google Scholar 

  41. Walter Kohn and Lu Jeu Sham, Phys. Rev. 1965, vol. 140, p. A1133.

    Google Scholar 

  42. Georg Kresse and Jürgen Furthmüller, Physical review B 1996, vol. 54, p. 11169.

    CAS  Google Scholar 

  43. Jürgen Hafner, Comput. Phys. Commun. 2007, vol. 177, pp. 6-13.

    CAS  Google Scholar 

  44. PE Blöchl (1994), Physl Rev B 50, 17-953.

    Google Scholar 

  45. G.Kresse and D. Joubert (1999), Phys. Rev. B , 59, 17-58.

    Google Scholar 

  46. J.P. Perdew, K. Burke and M. Ernzerhof (1996), Phys. Rev. Lett. 77, 38-65.

    Google Scholar 

  47. Min Chen and Chong-Yu Wang, Scripta Mater. 2009, vol. 60, pp. 659-662.

    CAS  Google Scholar 

  48. Alessandro Mottura, Anderson Janotti and Tresa M. Pollock, Intermetallics 2012, vol. 28, pp. 138-143.

    CAS  Google Scholar 

  49. RC Reed (2008) The Superalloys: Fundamentals and Applications. Cambridge University Press, Cambridge.

    Google Scholar 

  50. Chao Jiang, Scripta Mater. 2008, vol. 59, pp. 1075-1078.

    CAS  Google Scholar 

  51. MS Titus, A Mottura, GB Viswanathan, A Suzuki, MJ Mills, TM Pollock (2015) Acta Mater. 89, 423-437.

    CAS  Google Scholar 

  52. SK Makineni, A Kumar, M Lenz, P Kontis, T Meiners, C Zenk, S Zaefferer, G Eggeler, S Neumeier, E Spiecker, D Raabe and B Gault (2018), Acta Mater. 155, 362-371.

    CAS  Google Scholar 

Download references

Acknowledgments

C. Zhang would like to acknowledge financial support from the National Natural Science Foundation of China (Grant 51771097), Tsinghua University Initiative Scientific Research Program, the National Key Research and Development Plan (Grant 2017YFB0305201), and the Science Challenge Project (Grant TZ2018004). Z. Fan would like to give a special thanks to his wife for her professional advice in color selection of figures, to Dr. Geng Liu (Tsinghua University, China) for his technical help on several experiments, and also to Dr. Zhenghao Chen (Kyoto University, Japan) for his professional comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted on October 21, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Z., Wang, X., Yang, Y. et al. Microstructural Instability and Precipitation Behaviors of Intermetallic Phases in a Nb-Containing CoNi-Based Superalloy. Metall Mater Trans A 51, 2495–2508 (2020). https://doi.org/10.1007/s11661-020-05710-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05710-7

Navigation