Skip to main content
Log in

The Effect of Strain Rate and Temperature on the Mechanical Behavior of Al/Fe Interface Under Compressive Loading

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Molecular dynamics (MD) is employed to simulate the mechanical response of Al/Fe interface under compression at extreme conditions of seven temperatures and four strain rates ranging between 150 K and 900 K and 5.0 × 107 s−1 and 1.0 × 1010 s−1, respectively. Stress–strain histories show two distinct yield stress points for simulations at temperatures below 500 K, which tend to merge into one as the temperature increases. Microstructural simulations show nucleation of dislocations, which occur in the bulk of the aluminum region, is associated with the first yield point. In the iron region, dislocations nucleate at the Al/Fe interface and are associated with the second yield point. The incoherent interface employed in these simulations contributes to the heterogeneous nucleation in iron by creating a defected area favorable for this nucleation from the aluminum side. MD generated data show that the two yield stresses and the consequent flow stress decrease with increasing temperature for all strain rates and fit a thermally activated model function of strain rate. The competing mechanisms between dislocation motion and phonon drag driven deformation are also simulated and modeled. The flow stress of the interface was found to fall midway between Zerilli–Armstrong models of the two materials constituting it, whereas the relaxation in Fe followed similar trend to what is reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. B. Gurrutxaga-Lerma, M.A. Shehadeh, D.S. Balint, D. Dini, L. Chen, and D.E. Eakins: Int. J. Plast., 2017, vol. 96, pp. 135–55.

    Article  CAS  Google Scholar 

  2. A.P. Gerlich, L. Yue, P.F. Mendez, and H. Zhang: Acta Mater., 2010, vol. 58, pp. 2176–85.

    Article  CAS  Google Scholar 

  3. P. Gupta and N. Yedla: Procedia Eng., 2017, vol. 184, pp. 631–6.

    Article  CAS  Google Scholar 

  4. A. Dutta: Acta Mater., 2017, vol. 125, pp. 219–30.

    Article  CAS  Google Scholar 

  5. M. Yaghoobi and G.Z. Voyiadjis: Acta Mater., 2018, vol. 151, pp. 1–10.

    Article  CAS  Google Scholar 

  6. G. Sainath, B.K. Choudhary, and T. Jayakumar: Comput. Mater. Sci., 2015, vol. 104, pp. 76–83.

    Article  CAS  Google Scholar 

  7. G. Sainath and B.K. Choudhary: Mater. Sci. Eng. A, 2015, vol. 640, pp. 98–105.

    Article  CAS  Google Scholar 

  8. G. Sainath and B.K. Choudhary: Comput. Mater. Sci., 2016, vol. 111, pp. 406–15.

    Article  CAS  Google Scholar 

  9. M. Tang and J. Marian: Acta Mater., 2014, vol. 70, pp. 123–9.

    Article  CAS  Google Scholar 

  10. P. El Ters and M.A. Shehadeh: Int. J. Plast., 2019, vol. 112, pp. 257–77.

    Article  Google Scholar 

  11. R.F. Smith, J.H. Eggert, R.E. Rudd, D.C. Swift, C.A. Bolme, and G.W. Collins: J. Appl. Phys., 2011, vol. 110, pp. 123515.

  12. B.A. Remington, P. Allen, E.M. Bringa, J. Hawreliak, D. Ho, K.T. Lorenz, H. Lorenzana, J.M. McNaney, M.A. Meyers, S.W. Pollaine, K. Rosolankova, B. Sadik, M.S. Schneider, D. Swift, J. Wark, and B. Yaakobi: Mater. Sci. Technol., 2006, vol. 22, pp. 474–88.

    Article  CAS  Google Scholar 

  13. T. De Rességuier and M. Hallouin: J. Appl. Phys., 1998, vol. 84, pp. 1932–8.

    Article  Google Scholar 

  14. R. Becker, A. Arsenlis, G. Hommes, J. Marian, M. Rhee, and L.H. Yang: A Tantalum Strength Model Using a Multiscale Approach : Version 2, Livermore, CA, 2009.

    Book  Google Scholar 

  15. H. Shu, X. Huang, H. Pan, J. Ye, F. Zhang, G. Jia, Z. Fang, Y. Tu, Z. Xie, and S. Fu: Int. J. Fract., 2017, vol. 206, pp. 81–93.

    Article  CAS  Google Scholar 

  16. R.W. Armstrong, W. Arnold, and F.J. Zerilli: J. Appl. Phys., 2009, vol. 105, pp. 1–8.

    Google Scholar 

  17. Z. El Chlouk, W. Kassem, M. Shehadeh and R. Hamade, American University of Beirut, Beirut, Unpublished research, 2020.

  18. I.N. Mastorakos, A. Bellou, D.F. Bahr, and H.M. Zbib: J. Mater. Res., 2011, vol. 26, pp. 1179–87.

    Article  CAS  Google Scholar 

  19. R. Kohlhaas, P. Dunner, and N. Schmitz-Pranghe: Zeitschrift fur Angew. Phys., 1967, vol. 23, pp. 245–9.

    CAS  Google Scholar 

  20. W. Witt: Zeitschrift fur Naturforsch. - Sect. A J. Phys. Sci., 1967, vol. 22, pp. 92–5.

  21. S. Shao and S.N. Medyanik: Mech. Res. Commun., 2010, vol. 37, pp. 315–9.

    Article  Google Scholar 

  22. M.I. Mendelev, D.J. Srolovitz, G.J. Ackland, and S. Han: J. Mater. Res., 2005, vol. 20, pp. 208–18.

    Article  CAS  Google Scholar 

  23. R.G. Hoagland, J.P. Hirth, and A. Misra: Philos. Mag., 2006, vol. 86, pp. 3537–58.

    Article  CAS  Google Scholar 

  24. J. Vallin, M. Mongy, K. Salama, and O. Beckman: J. Appl. Phys., 1964, vol. 35, pp. 1825–6.

    Article  CAS  Google Scholar 

  25. E. Goens and E. Schmid: Zeitschrift für Elektrochemie und Angew. Phys. Chemie, 1931, vol. 37, pp. 539–40.

    CAS  Google Scholar 

  26. S. Queyreau, J. Marian, M.R. Gilbert, and B.D. Wirth: Phys. Rev. B - Condens. Matter Mater. Phys., 2011, vol. 84, pp. 1–7.

  27. L. Liu, Q. Deng, M. Su, M. An, and R. Wang: Superlattices Microstruct., 2019, vol. 135, p. 106272.

    Article  CAS  Google Scholar 

  28. T. Zhu, J. Li, A. Samanta, A. Leach, and K. Gall: Phys. Rev. Lett., 2008, vol. 100, pp. 1–4.

    Google Scholar 

  29. D. Caillard and J.L. Martin: Thermally Activated Mechanisms in Crystal Plasticity, 1st edn., Elsevier Science, Oxford, UK, 2003, pp. 23-26.

    Google Scholar 

  30. R.W. Armstrong and Q. Li: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2015, vol. 46, pp. 4438–53.

  31. J.W. Swegle and D.E. Grady: J. Appl. Phys., 1985, vol. 58, pp. 692–701.

    Article  CAS  Google Scholar 

  32. J.C. Crowhurst, M.R. Armstrong, K.B. Knight, J.M. Zaug, and E.M. Behymer: Phys. Rev. Lett., 2011, vol. 107, pp. 1–5.

    Article  Google Scholar 

  33. F.J. Zerilli and R.W. Armstrong: J. Appl. Phys., 1987, vol. 61, pp. 1816–25.

    Article  CAS  Google Scholar 

  34. G.T. Gray, S.R. Chen, W. Wright, and M.F. Lopez: New Mex. los Alamos Natl. Lab., 1994, pp. 21–8.

Download references

Acknowledgments

The authors wish to acknowledge the financial support of the university research board (URB) of the American University of Beirut.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramsey F. Hamade.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 06, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Chlouk, Z.G., Shehadeh, M.A. & Hamade, R.F. The Effect of Strain Rate and Temperature on the Mechanical Behavior of Al/Fe Interface Under Compressive Loading. Metall Mater Trans A 51, 2573–2589 (2020). https://doi.org/10.1007/s11661-020-05709-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05709-0

Navigation