Skip to main content

Advertisement

Log in

Comparative Study of Hydrogen Embrittlement of Three Heat-resistant Cr-Mo Steels Subjected to Electrochemical and Gaseous Hydrogen Charging

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Hydrogen embrittlement (HE) behaviors of low carbon steel and three heat-resistant Cr-Mo steels having different Cr contents were compared through tensile testing, silver decoration, and blistering observation after electrochemical hydrogen charging and hardness testing after gaseous hydrogen charging. It was observed that higher Cr content caused a longer suppression in charging hydrogen into the steels. However, under hydrogen supersaturation conditions, the higher the strength of the heat-resistant steels, the poorer the HE resistance after electrochemical charging. In contrast, the higher the Cr content, the better the HE resistance under high-temperature gaseous charging conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. OECD Knowledgebase (OEDE, Paris, France, 2014), http://www.oecd.org. Accessed 10 Mar 2015.

  2. A. Hasanbeigi, M. Arens and L. Price: Renewable Sustainable Energy Rev., 2014, vol. 33, pp. 645-658.

    Article  CAS  Google Scholar 

  3. W.-H. Chen, M.-R. Lin, A.B. Yu, S.-W. Du and T.-S. Leu: Int. J. Hydrogen Energy, 2012, vol. 37, pp. 11748-11758.

    Article  CAS  Google Scholar 

  4. W.-H. Chen, M.-R. Lin, T.-S. Leu and S.-W. Du: Int. J. Hydrogen Energy, 2011, vol. 36, pp. 11727-11737.

    Article  CAS  Google Scholar 

  5. X. Wang and T. Wang: Int. J. Hydrogen Energy, 2012, vol. 37, pp. 4974-4986.

    Article  CAS  Google Scholar 

  6. S. Tonomura: Energy Procedia, 2013, vol. 37, pp. 7160-7167.

    Article  CAS  Google Scholar 

  7. K. Fujimoto and K. Suzuki: Nippon Steel Technical Report, 2012, pp. 203–07.

  8. B. Messer, V. Oprea, K. Beaulieu, and A. Wright: NACE International, Corrosion Conference and Expo, Corrosion 2008, New Orleans, Louisiana, USA, unpublished research, 2008.

  9. Q. Liu and A. Atrens: Corros. Rev., 2013, vol. 31, pp. 85-103.

    Article  Google Scholar 

  10. T. Michler and J. Naumann: Int. J. Hydrogen Energy, 2010, vol. 35, pp. 821-832.

    Article  CAS  Google Scholar 

  11. B.A. Araújo, G.D. Travassos, A.A. Silva, E.O. Vilar, J.P. Carrasco and C.J. de Araújo: Key Eng. Mater., 2011, vol. 478, pp. 34-39.

    Article  Google Scholar 

  12. D. Hardie, E.A. Charles and A.H. Lopez: Corros. Sci., 2006, vol. 48, pp. 4378-4385.

    Article  CAS  Google Scholar 

  13. L. Marchetti, E. Herms, P. Laghoutaris and J. Chene: Int. J. Hydrogen Energy, 2011, vol. 36, pp. 15880-15887.

    Article  CAS  Google Scholar 

  14. C.A. Zapffe and C.E. Sims: Trans. AIME, 1941, vol. 145, pp. 225-271.

    Google Scholar 

  15. M. Gojié and L. Kosec: ISIJ Int., 1997, vol. 37, pp. 412-418.

    Article  Google Scholar 

  16. M. Gojić and M. Metikoš-Huković: European Federation of Corrosion, EUROCORR ’96, Nice, France, unpublished research, 1996.

  17. M. Tvrdỳ, S. Havel, L. Hyspecká and K. Mazanec: Int. J. Press. Vessels Pip., 1981, vol. 9, pp. 355-365.

    Article  Google Scholar 

  18. W. Moss: Guidelines on Materials Requirements for Carbon and Low Alloy Steels: For H2S-Containing Environments in Oil and Gas Production, 3rd ed., CRC Press, Florida, USA, 2019, pp. 56.

    Book  Google Scholar 

  19. NACE International: Petroleum and Natural Gas Industries—Materials for Use in H2S-Containing Environments in Oil and Gas Production, NACE International, Texas, USA, 2015, pp. 169.

    Google Scholar 

  20. M. Elboujdaini and R.W. Revie: J. Solid State Electrochem., 2009, vol. 13, pp. 1091-1099.

    Article  CAS  Google Scholar 

  21. C.F. Dong, Z.Y. Liu, X.G. Li and Y.F. Cheng: Int. J. Hydrogen Energy, 2009, vol. 34, pp. 9879-9884.

    Article  CAS  Google Scholar 

  22. T.Y. Jin, Z.Y. Liu and Y.F. Cheng: Int. J. Hydrogen Energy, 2010, vol. 35, pp. 8014-8021.

    Article  CAS  Google Scholar 

  23. D.P. Escobar, C. Miñambres, L. Duprez, K. Verbeken and M. Verhaege: Corros. Sci., 2011, vol. 53, pp. 3166-3176.

    Article  Google Scholar 

  24. American Petroleum Institute (API) (2016) API RP 941: Steels for Hydrogen Service at Elevated Temperatures and Pressures in Petroleum Refineries and Petrochemical Plants, 8th ed. American Petroleum Institute (API), Washington, DC, pp. 58.

    Google Scholar 

  25. American Petroleum Institute (API) (2008) API TR 941: The Technical Basis Document for API RP 941. American Petroleum Institute (API), Washington, DC, pp. 316.

    Google Scholar 

  26. T.A. Parthasarathy, H.F. Lopez and P.G. Shewmon: Metall. Trans. A, 1985, vol. 16, pp. 1143-1149.

    Article  Google Scholar 

  27. B.M. Saba: Evaluation of mechanical fitness for service of high-temperature hydrogen attacked steels, Master’s Theses, Louisiana State University and Agricultural and Mechanical College, 2003.

  28. V.E. Antonov, M. Baier, B. Dorner, V.K. Fedotov, G. Grosse, A.I. Kolesnikov, E.G. Ponyatovsky, G. Schneider and F.E. Wagner: J. Phys.: Condens. Matter, 2002, vol. 14, pp. 6427-6445.

    CAS  Google Scholar 

  29. F. Masuyama: ISIJ Int., 2001, vol. 41, pp. 612-625.

    Article  CAS  Google Scholar 

  30. J.R. Davis: ASM Specialty Handbook: Heat-Resistant Materials, ASM International, Almere, Netherlands, 1997, pp.591.

    Google Scholar 

  31. W. Yan, W. Wang, Y.-Y. Shan and K. Yang: Front. Mater. Sci., 2013, vol. 7, pp. 1-27.

    Article  Google Scholar 

  32. K.-B. Yoo, Y. He, H.-S. Lee, S.-Y. Bae and D.-S. Kim: Int. J. Electr. Power Energy Syst., 2018, vol. 4, pp. 25-31.

    Google Scholar 

  33. Z-F Hu (2012) Heat-Resistant Steels Microstructure Evolution and Life Assessment in Power Plants. IntechOpen, London, pp. 34.

    Google Scholar 

  34. J. Venezuela, E. Gray, Q. Liu, Q. Zhou, C. Tapia-Bastidas, M. Zhang and A. Atrens: Corros. Sci., 2017, vol. 127, pp. 45-58.

    Article  CAS  Google Scholar 

  35. S. Dépinoy: Microstructural Evolution of a 2.25Cr-1Mo Steel During Austenitization and Temperature: Austenite Grain Growth, Carbide Precipitation Sequence and Effects on Mechanical Properties, PhD Thesis, MINES ParisTech, 2015.

  36. Y. Shen, H. Matsuura and C. Wang: Metall. Mater. Trans. A, 2018, vol. 49, pp. 4413-4418.

    Article  Google Scholar 

  37. E. Fromm and H. Uchida: J. Less Common. Met., 1987, vol. 131, pp. 1-12.

    Article  CAS  Google Scholar 

  38. S.K. Yen: Mater. Chem. Phys., 1999, vol. 59, pp. 210-219.

    Article  CAS  Google Scholar 

  39. A. Oriani et al.: Hydrogen degradation of ferrous alloys, Noyes Publications, Illinois, USA, 1985, pp. 886.

    Google Scholar 

  40. R.W. Revie: Corrosion and Corrosion Control: An Introduction to Corrosion Science and Engineering, 4th ed., John Wiley & Sons, New Jersey, USA, 2008, pp. 512.

    Book  Google Scholar 

  41. T.A. Parthasarathy and P.G. Shewmon: Metall. Trans. A, 1984, vol. 15, pp. 2021-2027.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF-2017R1A2B2009336) and by the Converging Research Center Program through the Ministry of Science, ICT and Future Planning Korea (NRF-2014M3C1A8048842).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byoungchul Hwang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 15, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoo, I., Lee, JM., Lim, HS. et al. Comparative Study of Hydrogen Embrittlement of Three Heat-resistant Cr-Mo Steels Subjected to Electrochemical and Gaseous Hydrogen Charging. Metall Mater Trans A 51, 2118–2125 (2020). https://doi.org/10.1007/s11661-020-05704-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05704-5

Navigation