Skip to main content
Log in

Quantitative Analysis of Microstructures and Strength of Nb-Ti Microalloyed Steel with Different Ti Additions

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A quantitative analysis was carried out in the present study to determine the effects of titanium (Ti) addition on microstructures and strength of Nb-Ti microalloyed steel. The obtained results revealed that strength was significantly improved with an increase in Ti content from 0.041 to 0.079 wt pct. The difference in the yield strength between the two steel samples occurred due to the different strengthening effects of grain refinement, precipitation, and dislocation strengthening, among which the grain refinement and precipitation strengthening contributions were dominating. With a further increase in the Ti content, ferrite grains became refined. Consequently, a homogeneous ferrite microstructure was attained for high Ti contents. Moreover, large-sized (Ti, Nb)C particles manifested the Kurdjumov–Sachs (KS) relationship, whereas fine (Ti, Nb)C particles held the Baker–Nutting (BN) relationship; thus, abundant fine nanoscale (Ti, Nb)C particles formed after coiling. Furthermore, the high dislocation density facilitated the precipitation of (Ti, Nb)C particles along dislocation lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M. Ghosh, K. Bart, S.K. Das, B.R. Kumar, A.K. Pramanick, J. Chakraborty, G. Das, S. Hadas, S. Bharathy, and S.K. Ray: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 2719–31.

    Google Scholar 

  2. Y.W. Kim, S.W. Song, S.J. Seo, S.G. Hong, and C.S. Lee: Mater. Sci. Eng. A, 2013, vol. 565, pp. 430–38.

    CAS  Google Scholar 

  3. X. Mao, X. Huo, X. Sun, and Y. Chai: Mater. Process. Technol., 2010, vol. 210, pp. 1660–66.

    CAS  Google Scholar 

  4. G.S. Leire, L. Beatriz, and P. Beatriz: Mater. Sci. Eng. A, 2019, vol. 748, pp. 386–95.

    Google Scholar 

  5. A. Iza-Mendia, M.A. Altuna, B. Pereda, and I. Gutierrez: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 4553–70.

    Google Scholar 

  6. N. Isasti, D. Jorge-Badiola, M.L. Taheri, and P. Uranga: Metall. Mater. Int., 2014, vol. 20, pp. 807–17.

    CAS  Google Scholar 

  7. S.F. Medina, M. Chapa, P. Valles, A. Quispe, and M.I. Vega: ISIJ Int., 1999, vol. 39, pp. 930–36.

    CAS  Google Scholar 

  8. R. Lagneborg, T. Siwecki, S. Zajac, and B. Hutchinson: Scand. J. Metall., 1999, vol. 28, pp. 186–241.

    CAS  Google Scholar 

  9. S. Freeman and R.W.K. Honeycombe: Met. Sci., 1977, vol. 11, pp. 59–64.

    CAS  Google Scholar 

  10. R. Uemori, R. Chijiwa, H. Tamehiro, and H. Morikawa: Appl. Surf. Sci., 1994, vols. 76–77, pp. 255–60.

    Google Scholar 

  11. N. Isasti, D. Jorge-Badiola, M.L. Taheri, L. Beatriz, and P. Uranga: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3729–42.

    Google Scholar 

  12. X.P. Mao: Microalloying Technology on Thin Slab Casting and Direct Rolling Process, Metal Industry Press, Beijing, 2008.

    Google Scholar 

  13. N. Isasti, D. Jorge-Badiola, M.L. Taheri, and P. Uranga: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 4960–71.

    Google Scholar 

  14. R.D.K. Misra, H. Nathani, J.E. Hartmann, and F. Siciliano: Mater. Sci. Eng. A, 2005, vol. 394, pp. 339–52.

    Google Scholar 

  15. G. Xu, X.L. Gan, G.J. Ma, F. Luo, and H. Zou: Mater. Des., 2010, vol. 31, pp. 2891–96.

    CAS  Google Scholar 

  16. T. Gladman: Met. Sci. J., 1999, vol. 15, pp. 30–36.

    CAS  Google Scholar 

  17. H.H. Huang, G.W. Yang, G. Zhao, X.P. Mao, X.L. Gan, Q.L. Yin, and H. Yi: Mater. Sci. Eng. A, 2018, vol. 736, pp. 148–55.

    CAS  Google Scholar 

  18. K. Zhang, Z.D. Li, X.J. Sun, Q.L. Yong, J.W. Yang, Y.M. Li, and P.L. Zhao: Acta Metall. Sin., 2015, vol. 28, pp. 641–48.

    CAS  Google Scholar 

  19. Q.L. Yong: Microalloyed Steels Physical and Mechanical Metallurgy, China Machine Press, Beijing, 1989.

    Google Scholar 

  20. C. Ioannidou, Z. Arechabaleta, A. Navarro-López, A. Rijkenberg, R.M. Dalgliesh, S. Kölling, V. Bliznuk, C. Pappas, J. Sietsma, A.A. van Well, and S. Erik Offerman: Acta Mater., 2019, vol. 181, pp. 10–24.

    CAS  Google Scholar 

  21. Y.W. Kim, J.H. Kim, S.G. Hong, and C.S. Lee: Mater. Sci. Eng. A, 2014, vol. 605, pp. 244–52.

    CAS  Google Scholar 

  22. G.W. Yang, X.J. Sun, Q.L. Yong, Z.D. Li, and X.X. Li: Iron Steel Res. Int., 2014, vol. 21, pp. 757–64.

    CAS  Google Scholar 

  23. G.W. Yang, X.J. Sun, Z.D. Li, X.X. Li, and Q.L. Yong: Mater. Des., 2013, vol. 50, pp. 102–07.

    CAS  Google Scholar 

  24. H.W. Yen, P.Y. Chen, C.Y. Huang, and J.R. Yang: Acta Mater., 2011, vol. 59, pp. 6264–74.

    CAS  Google Scholar 

  25. Y.F. Shen, C.M. Wang, and X. Sun: Mater. Sci. Eng. A, 2011, vol. 528, pp. 8150–56.

    CAS  Google Scholar 

  26. H.L. Yang, G. Xu, L. Wang, Q. Yuan, and B. He: Met. Sci. Heat Treat., 2017, vol. 1, pp. 7–12.

    Google Scholar 

  27. C.P. Reip, S. Shanmugam, and R.D.K. Misra: Mater. Sci. Eng. A, 2006, vol. 424, pp. 307–17.

    Google Scholar 

  28. Z. Jia, R. D.K. Misra, R.O. Malley, and S.J. Jansto: Mater. Sci. Eng. A, 2011, vol. 528, pp. 7077–83.

    CAS  Google Scholar 

  29. M.D. Mulholland and D.N. Seidman: Acta Mater., 2011, vol. 59, pp. 1881–97.

    CAS  Google Scholar 

  30. H.L. Yi, Z.Y. Liu, G.D. Wang, and D. Wu: Iron Steel Res. Int., 2010, vol. 17, pp. 54–64.

    CAS  Google Scholar 

  31. Q. Liu, H. Peter, H.W. Zhang, Q. Wang, P. Jonsson, and K. Nakajima: ISIJ Int., 2012, vol. 52, pp. 2288–94.

    CAS  Google Scholar 

  32. X.L. Gan, G. Xu, G. Zhao, M.X. Zhou, and Z. Cai: J. Wuhan Univ. Technol., 2018, vol. 5, pp. 1193–97.

    Google Scholar 

  33. M. Zhu, G. Xu, M.X. Zhou, and H.J. Hu: J. Wuhan Univ. Technol., 2019, vol. 3, pp. 692–97.

    Google Scholar 

  34. S.Q. Yuan and G.L. Liang: Mater. Lett., 2009, vol. 27, pp. 2324–26.

    Google Scholar 

  35. R.Z. Wang, C.I. Garcia, M. Hua, K. Cho, H.T. Zhang, and A.J. Deardo: ISIJ Int., 2006, vol. 9, pp. 1345–53.

    Google Scholar 

  36. K. Zhang, Z.D. Li, F.L. Sui, Z.H. Zhu, X.F. Zhang, X.J. Sun, Z.Y. Huang, and Q.L. Yong: Acta Metall. Sinica, 2018, vol. 1, pp. 32–38.

    Google Scholar 

  37. P.K. Patra, S. Sam, M. Singhai, S.S. Hazra, G.D.J. Ram, and S.R. Bakshi: Trans. Ind. Inst. Met., 2017, vol. 70, pp. 1773–81.

    CAS  Google Scholar 

  38. Q. Yuan, G. Xu, M. Liu, S. Liu, and H.J. Hu: Trans. Ind. Inst. Met., 2019, vol. 72, pp. 741–49.

    CAS  Google Scholar 

  39. N. Isasti, J.B. Denis, M.L. Taheri, and P. Uranga: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 3552–63.

    Google Scholar 

  40. A. Rijkenberg, A. Blowey, P. Bellina, and C. Wooffindin: 4th Int. Conf. on Steels in Cars and Trucks, Braunschweig, Germany, 2014, pp. 15–19.

  41. J.W. Fu, Q.Q. Nie, W.X. Qiu, J.Q. Liu, and Y.C. Wu: Mater. Charact., 2017, vol. 133, pp. 176–84.

    CAS  Google Scholar 

  42. J.W. Cahn: Acta Metall., 1957, vol. 5, pp. 168–72.

    Google Scholar 

  43. H.W. Yen, C.Y. Chen, T.Y. Wang, C.Y. Huang, and J.R. Yang: Mater. Sci. Technol., 2013, vol. 26, pp. 421–30.

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from The National Natural Science Foundation of China (NSFC) (Grant No. 51874216), The Major Projects of Technology Innovation of Hubei Province (Grant No. 2017AAA116), the Hebei Joint Research Fund for Iron and Steel (Grant No. E2018318013), and the Postdoctoral Innovative Research Post of Hubei Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Yuan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 5, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, X., Yuan, Q., Zhao, G. et al. Quantitative Analysis of Microstructures and Strength of Nb-Ti Microalloyed Steel with Different Ti Additions. Metall Mater Trans A 51, 2084–2096 (2020). https://doi.org/10.1007/s11661-020-05700-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05700-9

Navigation