Skip to main content
Log in

The Dependence of Fracture Resistance on the Size and Distribution of Blocky Retained Austenite-Martensite Constituents

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Although third-generation advanced high-strength steels have achieved a great combination of high ultimate tensile strength and ductility, edge cracking has been frequently reported during their cold forming of components. Following this issue, the effects of the stability, the morphology, and the amount of retained austenite (RA) on fracture resistance have already been investigated. However, the influence of the size and distribution of blocky RA and/or martensite (RA/M) islands on fracture resistance is absent, which is deliberately addressed in this study. After austenitization, the effect of holding temperatures between 278 °C and 400 °C on microstructure evolution in a Fe-0.3C-2.5Mn-1.5Si-0.8Cr (wt pct) steel is systematically and quantitatively investigated. Tensile properties and fracture resistance are characterized using uniaxial tension and double edge-notched tension tests, which interestingly show that an increased product of ultimate tensile strength and total elongation is accompanied with a decreased fracture resistance. This is because that tensile properties are mainly affected by the stability and amount of RA while the fracture resistance is also affected by the size and distribution of blocky RA/M islands. A coarse size of and a small interspacing between blocky RA/M islands are detrimental to the fracture resistance due to the promotion of crack nucleation and crack propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. [1] Z.P. Xiong, A.G. Kostryzhev, N.E. Stanford, and E.V. Pereloma: Mater. Des., 2015, vol. 88, pp. 537-49.

    CAS  Google Scholar 

  2. [2] Z.P. Xiong, A.G. Kostryzhev, A.A. Saleh, L. Chen, and E.V. Pereloma: Mater. Sci. Eng. A, 2016, vol. 664, pp. 26-42.

    CAS  Google Scholar 

  3. [3] O. Grässel, L. Krüger, G. Frommeyer, and L.W. Meyer: Int. J. Plast., 2000, vol. 16, pp. 1391-1409.

    Google Scholar 

  4. [4] Z.P. Xiong, X.P. Ren, J. Shu, Z.L. Wang, W.P. Bao and S.X. Shu: J. Iron Steel Res. Int., 2015, vol. 22, pp. 179-84.

    CAS  Google Scholar 

  5. [5] F. Caballero and H. Bhadeshia: Curr. Opin. Solid State Mater. Sci., 2004, vol. 8, pp. 251-57.

    CAS  Google Scholar 

  6. [6] D. Edmonds, K. He, F. Rizzo, B. de Cooman, D. Matlock, and J. Speer: Mater. Sci. Eng. A, 2006, vol. 438, pp. 25-34.

    Google Scholar 

  7. [7] X. Gui, G. Gao, H. Guo, F. Zhao, Z. Tan, and B. Bai: Mater. Sci. Eng. A, 2017, vol. 684, pp. 598-605.

    CAS  Google Scholar 

  8. [8] K.W. Kim, K.I. Kim, C.H. Lee, J.Y. Kang, T.H. Lee, K.M. Cho, and K.H. Oh: Mater. Sci. Eng. A, 2016, vol. 673, pp. 557-61.

    CAS  Google Scholar 

  9. [9] J. Speer, D. Matlock, B. de Cooman, and J. Schroth: Acta Mater., 2003, vol. 51, pp. 2611-22.

    CAS  Google Scholar 

  10. [10] H. Bhadeshia and D. Edmonds: Metal Sci., 1983, vol. 17, pp. 411-19.

    CAS  Google Scholar 

  11. [11] E. de Moor, J.G. Speer, D.K. Matlock, J.H. Kwak, and S.B. Lee: ISIJ Int., 2011, vol. 51, pp. 137-44.

    Google Scholar 

  12. [12] L. Kučerová, H. Jirková, and B. Mašek: Arch. Metall. Mater., 2014, vol. 59, pp. 1189-92.

    Google Scholar 

  13. [13] F.G. Caballero, J.D. Poplawsky, H.W. Yen, R. Rementeria, L. Morales-Rivas, J.R. Yang, and C. García-Mateo: Mater. Sci. Forum, 2017, vol. 878, pp. 2401-06.

    Google Scholar 

  14. [14] X.Y. Long, J. Kang, B. Lv, and F.C. Zhang: Mater. Des., 2014, vol. 64, pp. 237-45.

    CAS  Google Scholar 

  15. [15] B. Avishan, S. Yazdani, F. Caballero, T. Wang, and C. Garcia-Mateo: Mater. Sci. Technol., 2015, vol. 31, pp. 1508-20.

    CAS  Google Scholar 

  16. [16] P. Jacques, Q. Furnemont, T. Pardoen, and F. Delannay: Acta Mater., 2001, vol. 49, pp. 139-52.

    CAS  Google Scholar 

  17. [17] G. Lacroix, T. Pardoen, and P.J. Jacques: Acta Mater., 2008, vol. 56, pp. 3900-13.

    CAS  Google Scholar 

  18. [18] I. de Diego-Calderón, I. Sabirov, J. Molina-Aldareguia, C. Föjer, R. Thiessen, and R. Petrov: Mater. Sci. Eng. A, 2016, vol. 657, pp. 136-46.

    Google Scholar 

  19. [19] R. Wu, W. Li, S. Zhou, Y. Zhong, L. Wang, and X. Jin: Metall. Mater. Trans. A, 2014, vol. 45, pp. 1892-1902.

    Google Scholar 

  20. [20] G. Gao, H. Zhang, X. Gui, P. Luo, Z. Tan, and B. Bai: Acta Mater., 2014, vol. 76, pp. 425-33.

    CAS  Google Scholar 

  21. [21] Z.P. Xiong, P.J. Jacques, A. Perlade, and T. Pardoen: Metall. Mater. Trans. A, 2019, vol. 50, pp. 3502-13.

    Google Scholar 

  22. [22] Q. Zhou, L. Qian, J. Tan, J. Meng, and F. Zhang: Mater. Sci. Eng. A, 2013, vol. 578, pp. 370-76.

    CAS  Google Scholar 

  23. [23] H. Lan, L. Du, Q. Li, C. Qiu, J. Li, and R. Misra: J. Alloys Compd., 2017, vol. 710, pp. 702-10.

    CAS  Google Scholar 

  24. [24] J. Kobayashi, D. Ina, N. Yoshikawa, and K.I. Sugimoto: ISIJ Int., 2012, vol. 52, pp. 1894-1901.

    CAS  Google Scholar 

  25. [25] S. van Bohemen: Mater. Sci. Technol., 2012, vol. 28, pp. 487-95.

    Google Scholar 

  26. [26] G. K. Bansal, M. Pradeep, C. Ghosh, V. Rajinikanth, V. C. Srivastava, A. N. Bhagat and S. Kundu: Metall. Mater. Trans. A, 2019, vol. 50, pp. 547-55.

    Google Scholar 

  27. [27] M. Santofimia, L. Zhao, R. Petrov, C. Kwakernaak, W. Sloof, and J. Sietsma: Acta Mater., 2011, vol. 59, pp. 6059-68.

    CAS  Google Scholar 

  28. [28] N. van Dijk, A. Butt, L. Zhao, J. Sietsma, S. Offerman, J. Wright, and S. van der Zwaag: Acta Mater., 2005, vol. 53, pp. 5439-47.

    Google Scholar 

  29. [29] B. Cotterell and J. Reddel: Int.J. Fracture, 1977, vol. 13, pp. 267-77.

    CAS  Google Scholar 

  30. J. Rice, P. Paris, J. Merkle: Some further results of J-integral analysis and estimates, in: A.s.f.t.a. materials (Ed.) Progress in flaw growth and fracture toughness testing, ASTM International, Philadelphia, 1973, pp. 231-45.

  31. [31] T.L. Anderson: Fracture mechanics: fundamentals and applications, fourth ed., CRC Press, Boca Raton. 2017.

    Google Scholar 

  32. [32] Z.P. Xiong, P.J. Jacques, A. Perlade, and T. Pardoen: Scripta Mater., 2018, vol. 157, pp. 6-9.

    CAS  Google Scholar 

  33. [33] Z. Xie, Y. Ren, W. Zhou, J. Yang, C. Shang, and R. Misra: Mater. Sci. Eng. A, 2014, vol. 603, pp. 69-75.

    CAS  Google Scholar 

  34. [34] M.J. Santofimia, L. Zhao, and J. Sietsma: Metall. Mater. Trans. A, 2011, vol. 42, pp. 3620-26.

    Google Scholar 

  35. [35] J.H. Chen, Y. Kikuta, T. Araki, M. Yoneda, and Y. Matsuda: Acta Metall., 1984, vol. 32, pp. 1779-88.

    CAS  Google Scholar 

  36. [36] C. Davis and J. King: Mater. Sci. Technol., 1993, vol. 9, pp. 8-15.

    CAS  Google Scholar 

  37. [37] D. Tian, L.P. Karjalainen, B. Qian, and X. Chen: JSME Int. J. Ser. A Mech. Mater. Eng., 1997, vol. 40, pp. 179-88.

    CAS  Google Scholar 

  38. [38] P. Huyghe, S. Dépinoy, M. Caruso, D. Mercier, C. Georges, L. Malet, and S. Godet: ISIJ Int., 2018, vol. 58, pp. 1341-50.

    CAS  Google Scholar 

  39. [39] X. Li, Y. Fan, X. Ma, S.V. Subramanian, and C. Shang: Mater. Des., 2015, vol. 67, pp. 457-63.

    CAS  Google Scholar 

  40. [40] F. Zia-Ebrahimi and G. Krauss: Metall. Mater. Trans. A, 1983, vol. 14, pp. 1109-19.

    CAS  Google Scholar 

  41. [41] Y.J. Zhao, X.P. Ren, Z.L. Hu, Z.P. Xiong, J.M. Zeng, and B.Y. Hou: Mater. Sci. Eng. A, 2018, vol. 711, pp. 397-404.

    CAS  Google Scholar 

  42. [42] F. Caballero, H. Bhadeshia, K. Mawella, D. Jones, and P. Brown: Mater. Sci. Technol., 2001, vol. 17, pp. 517-22.

    CAS  Google Scholar 

  43. [43] H. Guo, A. Zhao, R. Ding, C. Zhi, and J. He: Mater. Sci. Technol., 2016, vol. 32, pp. 1605-12.

    CAS  Google Scholar 

  44. [44] J. Zhang, H. Ding, R. Misra, and C. Wang: Mater. Sci. Eng. A, 2014, vol. 611, pp. 252-56.

    CAS  Google Scholar 

  45. [45] Y. Huang, Q. Li, X. Huang, and W. Huang: Mater. Sci. Eng. A, 2016, vol. 678, pp. 339-46.

    CAS  Google Scholar 

Download references

Acknowledgments

This research is supported by ArcelorMittal Global R&D Maizières Products in France and Université catholique de Louvain in Belgium. Z.P.X thanks the “Beijing Institute of Technology Research Fund Program for Young Scholars.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiping Xiong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 31, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, D., Xiong, Z. The Dependence of Fracture Resistance on the Size and Distribution of Blocky Retained Austenite-Martensite Constituents. Metall Mater Trans A 51, 2072–2083 (2020). https://doi.org/10.1007/s11661-020-05698-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05698-0

Navigation