Skip to main content
Log in

Thickness-Dependent Mechanical Behavior of 〈111〉-Oriented Cu Single Crystals

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

To explore the dependence of mechanical behavior on the crystal size, the \( [\bar{1}11] \)-oriented Cu single crystal was selected as a target material, and the variations of tensile and tension–tension fatigue behavior with the crystal specimen thickness (t) were systematically investigated. The results show that, with the decrease of t, the tensile yield strength continuously increases, especially as t < 0.4 mm, which is related to an enhanced role of surfaces in affecting dislocation activity; ultimate tensile strength first increases and elongation has almost no change as t is decreased from 2.0 to 1.0 mm, but with continuously decreasing t, both of them decrease; as t = 0.1 mm, the slight increases in ultimate tensile strength and elongation occur. With the decrease of t, the corresponding dislocation structures are evolved from the cell walls into the cells and tangles; meanwhile, the density of slip bands (SBs) decreases. Moreover, the obvious concentrated SB regions and notable cross-slip traces are clearly observed in thicker crystals. The fatigue life has no notable change as t = 2.0 and 1.0 mm, but increases subsequently with decreasing t due to the decrease in the plastic strain accumulation together with an enhanced interaction between the dislocations in the surface zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. E. Arzt: Acta Metall., 1998, vol. 46, pp. 5611-26.

    CAS  Google Scholar 

  2. X.H. Dong, X.T. Hong, F. Chen, B.R. Sang, W. Yu, and X.P. Zhang: Mater. Design, 2014, vol. 64, pp. 400-6.

    CAS  Google Scholar 

  3. X.X. Chen and A.H.W. Ngan: Scripta Mater., 2011, vol. 64, pp. 717-20.

    CAS  Google Scholar 

  4. M. Lederer, V. Gröger, G. Khatibi, and B. Weiss: Mater. Sci. Eng. A, 2010, vol. 527, pp. 590-9.

    Google Scholar 

  5. Y.H. Zhao, Y.Z. Guo, Q. Wei, T.D. Topping, A.M. Dangelewicz, T.T. Zhu, T.G. Langdon, and E.J. Lavernia: Mater. Sci. Eng. A, 2009, vol. 525, pp. 68-77.

    Google Scholar 

  6. A. Molotnikov, R. Lapovok, C.H.J. Davies, W. Cao, and Y. Estrin: Scripta Mater., 2008, vol. 59, pp. 1182-85.

    CAS  Google Scholar 

  7. G. Simons, C. Weippert, J. Dual, and J. Villain: Mater. Sci. Eng. A, 2006, vol. 416, pp. 290-9.

    Google Scholar 

  8. C. Howard, D. Frazer, A. Lupinacci, S. Parker, R.Z. Valiev, C. Shin, and B. William Choi: Mater. Sci. Eng. A, 2016, vol. 649, pp. 104-13.

    CAS  Google Scholar 

  9. H. Fang, R. Shiohara, T. Sumigawa, and T. Kitamura: Mater. Sci. Eng. A, 2014, vol. 618, pp. 416-23.

    CAS  Google Scholar 

  10. J.P. Wharry, K.H. Yano, and P.V. Patki: Scripta Mater., 2019, vol. 162, pp. 63-7.

    CAS  Google Scholar 

  11. H.D. Espinosa, B.C. Prorok, and B. Peng: J. Mech. Phys. Solids, 2004, vol. 52, pp. 667-89.

    CAS  Google Scholar 

  12. J.R. Greer and J.T.M. De Hosson: Prog. Mater. Sci., 2011, vol. 56, pp. 654-724.

    CAS  Google Scholar 

  13. S.H. Oh, M. Legros, D. Kiener, and G. Dehm: Nature Mater., 2009, vol. 8, pp. 95-100.

    CAS  Google Scholar 

  14. T.A. Parthasarathy, S.I. Rao, D.M. Dimiduk, M.D. Uchic, and D.R. Trinkle: Scripta Mater., 2007, vol. 56, pp. 313-16.

    CAS  Google Scholar 

  15. D. Kiener and A.M. Minor: Nano lett., 2011, vol. 11, pp. 3816-20.

    CAS  Google Scholar 

  16. G.P. Zhang, K.H. Sun, B. Zhang, J. Gong, C. Sun, and Z.G. Wang: Mater. Sci. Eng. A, 2008, vol. 483-484, pp. 387-90.

    Google Scholar 

  17. U. Engel and R. Eckstein: J. Mater. Process. Technol., 2002, vol. 125-126, pp. 35-44.

    Google Scholar 

  18. C.S. Han, A. Hartmaier, H.J. Gao, and Y.G. Huang: Mater. Sci. Eng. A, 2006, vol. 415, pp. 225-33.

    Google Scholar 

  19. C. Keller, E. Hug, and D. Chaterigner: Mater. Sci. Eng. A, 2009, vol. 500, pp. 207-15.

    Google Scholar 

  20. H. Bei, S. Shim, G.M. Pharr, and E.P. George: Acta Mater., 2008, vol. 56, pp. 4762-70.

    CAS  Google Scholar 

  21. Y. Yan, M. Lu, W.W. Guo, and X.W. Li: Mater. Sci. Eng. A, 2014, vol. 600, pp. 99-107.

    CAS  Google Scholar 

  22. D. Kiener, P. Hosemann, S.A. Maloy, and A.M. Minor: Nature Mater., 2011, vol. 10, pp. 608-13.

    CAS  Google Scholar 

  23. K.S. Ng and A.H.W. Ngan: Acta Mater., 2009, vol. 57, pp. 4902-10.

    CAS  Google Scholar 

  24. M.Q. Liu, Y.L. Liu, Y. Yan, D. Han, and X.W. Li: Cryst. Res. Technol., 2017, vol. 52, pp. 1700178.

    Google Scholar 

  25. S.H. Oh, M. Legros, D. Kiener, P. Gruber, and G. Dehm: Acta Mater., 2007, vol. 55, pp. 5558-71.

    CAS  Google Scholar 

  26. C. Keller, A.M. Habraken, and L. Duchene: Mater. Sci. Eng. A, 2012, vol. 550, pp. 342-9.

    CAS  Google Scholar 

  27. K. Kammuri, M. Kitamura, and T. Fujii: Mater. Trans., 2015, vol. 56, pp. 200-5.

    CAS  Google Scholar 

  28. Z.J. Zhou, T. Liu, S. Pu, H. Xu, L. Wang, and L.H. Lou: J. Alloy. Compd., 2015, vol. 647, pp. 802-8.

    CAS  Google Scholar 

  29. P. Li, S.X. Li, Z.G. Wang, and Z.F. Zhang: Prog. Mater. Sci., 2011, vol. 56, pp. 328-77.

    CAS  Google Scholar 

  30. S. Suresh: Fatigue of Materials, Cambridge University Press, Cambridge, 2001.

    Google Scholar 

  31. J.T. Gao, C. Principe, and J. Wang: J Mater. Proc. Technol., 2007, vol. 184, pp. 42-6.

    Google Scholar 

  32. H. Mughrabi: Mater. Sci. Eng. A, 2004, vol. 387-389, pp. 209-13.

    Google Scholar 

  33. X.W. Li, Z.G. Wang, and S.X. Li: Philo. Mag. Lett., 1999, vol. 79, pp. 869-75.

    CAS  Google Scholar 

  34. X.W. Li, W.P. Jia, Z.G. Wang, and S.X. Li: J. Mater. Sci. Lett., 2000, vol. 19, pp. 641-3.

    CAS  Google Scholar 

  35. Z. Wang, W.J. Romanow, and C. Laird: Metall. Trans. A, 1989, vol. 20, pp. 759-69.

    Google Scholar 

  36. J.R. Greer, W.C. Oliver, and W.D. Nix: Acta Mater., 2005, vol. 53, pp. 1821-30.

    CAS  Google Scholar 

  37. D.M. Dimiduk, M.D. Uchic, and T.A. Parthasarathy: Acta Mater., 2005, vol. 53, pp. 4065-77.

    CAS  Google Scholar 

  38. G. Richter, K. Hillerich, D.S. Gianola, R. Monig, O.Kraft, and C.A. Volkert: Nano Lett., 2009, vol. 9, pp. 3048-52.

    CAS  Google Scholar 

  39. B. Yang, C. Motz, M. Rester, and G. Dehm: Philos. Mag., 2012, vol. 92, pp. 3243-56.

    CAS  Google Scholar 

  40. C.Y. Dai, J. Xu, B. Zhang, and G.P. Zhang: Philo. Mag. Lett., 2013, vol. 93, pp. 531-40.

    CAS  Google Scholar 

  41. Y. Yan, G.Q. Zhang, L.J. Chen, and X.W. Li: Inter. J. Min. Metall. Mater., 2019, vol. 26, pp. 1450-5.

    CAS  Google Scholar 

  42. C.R. Weinberger and W. Cai: Proc. Natl. Acad. Sci., 2008, vol. 105, pp. 14304-7.

    CAS  Google Scholar 

  43. Z.X. Wang, H.J. Shi, and J. Lu: Theor. Appl. Fract. Mech., 2008, vol. 50, pp. 124-31.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China under Grant Nos. 51571058 and 51871048 and by the Open Foundation of Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, China, under Grant No. ATM20170001. Prof. X.W. Li is grateful for this support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. W. Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 14, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Y., Liu, Y.L., Liu, M.Q. et al. Thickness-Dependent Mechanical Behavior of 〈111〉-Oriented Cu Single Crystals. Metall Mater Trans A 51, 2044–2052 (2020). https://doi.org/10.1007/s11661-020-05689-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05689-1

Navigation